Individual Events

I1	P	40	12	P	$\frac{99}{100}$	13	P	12	I 4	P	4
	$\boldsymbol{\varrho}$	72		ϱ	1		Q	1		$\boldsymbol{\varrho}$	8
	R	648		R	3		R	615		R	4
	S	40.5		S	$\frac{1}{12}$		S	60		S	10

Group Events

G1	a	21	G2	a	24	G3	а	2005	G4	а	4032
	b	2.5		b	52		b	2		b	2
	c	19		c	2005003		c	649		c	1
	d	300°		d	3		d	8		d	2

Individual Event 1

I1.1 In the following figure, ABCD is a square of length 10 cm. AEB, FED and FBC are straight lines. The area of $\triangle AED$ is larger than that of $\triangle FEB$ by 10 cm². If the area of $\triangle DFB$ is $P \text{ cm}^2$, find the value of P.

Let the area of $\triangle BDE$ be x.

Then area of $\triangle AED + x$ – (area of $\triangle BEF + x$) = 10 area of $\triangle ABD$ – area of $\triangle BDF$ = 10

$$\frac{1}{2} \cdot 10 \times 10$$
 – area of $\triangle BDF = 10$

area of $\triangle BDF = 40$

Area of $\triangle ADE$ – area of $\triangle BFE = 10$ (given)

$$\Rightarrow$$
 Area of $\triangle ADE$ + area of $\triangle AEF$ – area of $\triangle BFE$ – area of $\triangle AEF$ = 10

$$\Rightarrow$$
 Area of $\triangle ADF$ – area of $\triangle AFB = 10$

$$\Rightarrow \frac{1}{2} \cdot 10 \times 10$$
 - area of $\triangle DFB = 10 \Rightarrow$ Area of $\triangle DFB = 50 - 10 = 40$

$$\frac{1}{90} + \frac{1}{Q} = \frac{1}{40}$$
$$Q = 72$$

Reference: 1993 HI2, 1997 HG3, 2000 FI2.2, 2004 HG7, 2010HG4, 2013 HG2 It is easy to show that $\triangle ABE \sim \triangle CDE$ (equiangular)

$$Q: 4Q = (AB)^2: (CD)^2 \Rightarrow AB: CD = 1:2$$

$$AE : EC = AE : EC = BE : ED = 1 : 2$$
 (ratio of sides, $\sim \Delta$'s)

$$S_{\triangle AEB}: S_{\triangle AED} = BE: ED = 1: 2$$
 (the 2 \triangle s have the same heights)

$$S_{\Lambda AED} = 2Q$$

$$S_{\triangle AEB}: S_{\triangle BEC} = AE : EC = 1:2$$
 (the 2 \Deltas have the same heights)

$$S_{\Delta BEC} = 2Q$$

$$S_{ABCD} = Q + 4Q + 2Q + 2Q = 9Q = 648$$

$$R = 648$$

I1.4 In the following figure, O is the centre of the circle, HJ and IK are diameters and $\angle HKI = S^{\circ}$.

Given that $\angle HKI + \angle HOI + \angle HJI = \frac{1}{4}R^{\circ}$, find the value of S.

$$S^{\circ}+2S^{\circ}+S^{\circ}=\frac{1}{4}\times648^{\circ}$$

$$\Rightarrow$$
 4S°=162° (\angle at centre = 2 \angle at \odot ^{ce})

$$S = 40.5$$

Individual Event 2

12.1 Given that $P = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{99 \times 100}$, find the value of P.

$$P = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100}$$
$$= 1 - \frac{1}{100} = \frac{99}{100}$$

I2.2 Given that $99Q = P \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + \dots)$, find the value of Q.

$$99Q = \frac{99}{100} \times (1 + \frac{99}{100} + \frac{99^2}{100^2} + \frac{99^3}{100^3} + \dots)$$
$$= \frac{99}{100} \times \frac{1}{1 - \frac{99}{100}} = 99$$

$$Q = 1$$

12.3 Given that x and R are real numbers and $\frac{2x^2 + 2Rx + R}{4x^2 + 6x + 3} \le Q$ for all x, find the maximum value

of
$$R$$
.

$$4x^2 + 6x + 3 = (2x + 1.5)^2 + 0.75 > 0$$

$$\frac{2x^2 + 2Rx + R}{4x^2 + 6x + 3} \le 1$$

$$2x^2 + 2Rx + R \le 4x^2 + 6x + 3$$

$$2x^2 + 2(3 - R)x + 3 - R \ge 0$$

$$\Delta \leq 0$$

$$(3-R)^2 - 2(3-R) \le 0$$

$$(3-R)(1-R) \le 0$$

$$1 \le R \le 3$$

The maximum value of R = 3

I2.4 Given that $S = \log_{144} \sqrt[R]{2} + \log_{144} \sqrt[2R]{R}$, find the value of S.

$$S = \frac{\frac{1}{3}\log 2}{\log 144} + \frac{\frac{1}{6}\log 3}{\log 144} = \frac{2\log 2 + \log 3}{6\log 144} = \frac{\log 12}{6\log 12^2} = \frac{\log 12}{12\log 12} = \frac{1}{12}$$

Method 2

$$S = \log_{144} \sqrt[R]{2} + \log_{144} \sqrt[2R]{R}$$

$$= \log_{144} (\sqrt[3]{2} \cdot \sqrt[6]{3})$$

$$= \log_{144} (\sqrt[6]{12})$$

$$= \log_{144} (\sqrt[12]{144}) = \frac{1}{12}$$

Individual Event 3

I3.1 A rectangular piece of paper is folded into the following figure. If the area of $\triangle ABC$ is $\frac{1}{3}$

of the area of the original rectangular piece of paper, find the value of *P*.

$$BC = P - 4, AC = 10, \angle ACB = 90^{\circ}$$

$$\frac{(P-4)\cdot 10}{2} = \frac{1}{3} \times P \times 10$$

$$\Rightarrow P = 12$$

I3.2 If Q is the positive integral solution of the equation $\frac{P}{2}(4^x + 4^{-x}) - 35(2^x + 2^{-x}) + 62 = 0$, find

the value of Q.

Let
$$t = 2^x + 2^{-x}$$
, then $t^2 = 4^x + 4^{-x} + 2$
 $\Rightarrow 4^x + 4^{-x} = t^2 - 2$

The equation becomes $6(t^2 - 2) - 35t + 62 = 0$

$$6t^2 - 35t + 50 = 0$$

$$(2t - 5)(3t - 10) = 0$$

$$t = \frac{5}{2} \quad \text{or} \quad \frac{10}{3}$$

$$2^{x} + 2^{-x} = \frac{5}{2}$$
 or $2^{x} + 2^{-x} = \frac{10}{3}$

$$2^{x} + \frac{1}{2^{x}} = \frac{5}{2}$$
 or $2^{x} + \frac{1}{2^{x}} = \frac{10}{3}$

$$2(2^x)^2 + 2 = 5(2^x)$$
 or $3(2^x)^2 + 3 = 10(2^x)$

$$2(2^x)^2 - 5(2^x) + 2 = 0$$
 or $3(2^x)^2 - 10(2^x) + 3 = 0$

$$(2 \cdot 2^x - 1)(2^x - 2) = 0$$
 or $(3 \cdot 2^x - 1)(2^x - 3) = 0$

$$2^x = \frac{1}{2}$$
, 2, $\frac{1}{3}$ or 3

For positive integral solution x = 1; Q = 1

I3.3 Let [a] be the largest integer not greater than a. For example, [2.5] = 2.

If
$$R = [\sqrt{1}] + [\sqrt{2}] + \cdots + [\sqrt{99Q}]$$
, find the value of R .

$$R = [\sqrt{1}] + [\sqrt{2}] + \dots + [\sqrt{99}] = 1 + 1 + 1 + \underbrace{2 + \dots + 2}_{5 \text{ times}} + \underbrace{3 + \dots + 3}_{7 \text{ times}} + \dots + \underbrace{9 + \dots + 9}_{19 \text{ times}}$$

$$R = 3 \times 1 + 5 \times 2 + 7 \times 3 + \dots + 19 \times 9$$

$$R = (2 \times 1 + 1) \times 1 + (2 \times 2 + 1) \times 2 + (2 \times 3 + 1) \times 3 + \dots + (2 \times 9 + 1) \times 9$$

$$R = 2 \times 1^2 + 1 + 2 \times 2^2 + 2 + 2 \times 3^2 + 3 + \dots + 2 \times 9^2 + 9$$

$$R = 2 \times (1^2 + 2^2 + 3^2 + \dots + 9^2) + (1 + 2 + 3 + \dots + 9)$$

$$R = 2 \times \frac{1}{6} \cdot 9(9+1)(2 \times 9+1) + \frac{(1+9)9}{2} = 3 \times 10 \times 19 + 45 = 570 + 45 = 615$$

I3.4 In a convex polygon, other than the interior angle A, the sum of all the remaining interior angles is equal to $4R^{\circ}$. If $\angle A = S^{\circ}$, find the value of S.

Reference: 1989 HG2, 1990 FG10.3-4, 1992 HG3, 2013 HI6

$$4 \times 615 + S = 180 \times (n-2)$$

$$S = 180(n-2) - 2460$$

: The polygon is convex

$$\therefore S < 180. S = 180(14) - 2460 = 60$$

Individual Event 4

I4.1 Given that $f(x) = (x^2 + x - 2)^{2002} + 3$ and $f\left(\frac{\sqrt{5}}{2} - \frac{1}{2}\right) = P$, find the value of P.

$$x = \frac{\sqrt{5}}{2} - \frac{1}{2}$$

$$\Rightarrow 2x = \sqrt{5} - 1$$

$$\Rightarrow (2x + 1) = \sqrt{5}$$

$$\Rightarrow (2x + 1)^2 = 5$$

$$\Rightarrow 4x^2 + 4x - 4 = 0$$

$$\Rightarrow x^2 + x = 1$$

$$f(x) = (x^2 + x - 2)^{2002} + 3 = (1 - 2)^{2002} + 3 = 1 + 3 = 4$$

14.2 In the following figure, ABCD is a rectangle. E and F are A points on AB and BC respectively. The areas of triangles AED, EBF and FCD are P, 3 and 5 respectively. If the area of ΔEFD is Q, find the value of Q.

Let
$$AE = x$$
, $CF = y$, $AD = b$, $CD = a$.

Then
$$BE = a - x$$
, $BF = b - y$

Given the area of
$$\triangle ADE = 4 \Rightarrow bx = 8 \cdot \cdot \cdot \cdot (1)$$

the area of
$$\triangle CDF = 5 \Rightarrow ay = 10 \cdot \cdots \cdot (2)$$

The area of
$$\triangle BEF = 3 \Rightarrow (a - x)(b - y) = 6$$

$$\Rightarrow ab - bx - ay + xy = 6 \cdot \cdot \cdot \cdot (3)$$

Sub. (1), (2) into (3)
$$ab - 8 - 10 + xy = 6$$

Sub. (1), (2) into the equation again:
$$ab - 18 + \frac{80}{ab} = 6$$

Solving for
$$ab$$
, $ab = 20$ or 4 (rejected)

The area of
$$\triangle DEF = 20 - 3 - 4 - 5 = 8$$

$$Q = 8$$

I4.3 It is given that x and y are positive integers. If the number of solutions (x, y) of the inequality $x^2 + y^2 \le Q$ is R, find the value of R. (Reference: 2007 FG1.2)

$$x^2 + y^2 \le 8$$

 $\Rightarrow (x, y) = (1, 1), (1, 2), (2, 1), (2, 2)$

I4.4 It is given that α and β are roots of the equation $x^2 - ax + a - R = 0$, where a is real.

If the minimum value of
$$(\alpha + 1)^2 + (\beta + 1)^2$$
 is S, find the value of S.

$$x^{2} - ax + a - 4 = 0; \alpha + \beta = a, \alpha \beta = a - 4$$

$$(\alpha + 1)^{2} + (\beta + 1)^{2} = \alpha^{2} + 2\alpha + 1 + \beta^{2} + 2\beta + 1$$

$$= (\alpha + \beta)^{2} - 2\alpha\beta + 2(\alpha + \beta) + 2$$

$$= a^{2} - 2(a - 4) + 2a + 2 = a^{2} + 10 \ge 10$$

The minimum value is S = 10.

G1.1 Assume that the curve $x^2 + 3y^2 = 12$ and the straight line mx + y = 16 intersect at only one point. If $a = m^2$, find the value of a.

Sub.
$$y = 16 - mx$$
 into $x^2 + 3y^2 = 12$

$$\Rightarrow x^2 + 3(16 - mx)^2 = 12$$

$$x^2 + 3(256 - 32mx + m^2x^2) = 12$$

$$\Rightarrow (1+3m^2)x^2-96mx+756=0$$

The straight line is a tangent $\Rightarrow \Delta = (-96m)^2 - 4(1 + 3m^2)756 = 0$

$$576m^2 - 189(1 + 3m^2) = 0$$

$$\Rightarrow 64m^2 - 21(1 + 3m^2) = 0$$

$$\Rightarrow a = m^2 = 21$$

G1.2 It is given that x + y = 1 and $x^2 + y^2 = 2$. If $x^3 + y^3 = b$, find the value of b.

Reference: 2011 FI2.2

$$(x + y)^2 = 1 \Rightarrow x^2 + y^2 + 2xy = 1$$

$$\Rightarrow$$
 2 + 2xy = 1

$$\Rightarrow xy = -\frac{1}{2}$$

$$b = x^3 + y^3$$

$$= (x + y)(x^2 + y^2 - xy)$$

$$=1(2+\frac{1}{2})=\frac{5}{2}$$

G1.3 In the following figure, AC = AD = AE = ED = DB and $\angle BEC = c^{\circ}$. Given that $\angle BDC = 26^{\circ}$ and $\angle ADB = 46^{\circ}$, find the value of c.

$$\triangle ADE$$
 is an equilateral triangle.

$$\angle DAE = \angle ADE = \angle AED = 60^{\circ}$$

$$\therefore BD = DE \text{ and } \angle BDE = 46^{\circ} + 60^{\circ} = 106^{\circ}$$

$$\therefore \angle BED = (180^{\circ} - 106^{\circ}) \div 2 = 37^{\circ} (\angle \text{ sum of } \Delta)$$

$$\angle AEB = 60^{\circ} - 37^{\circ} = 23^{\circ}$$

$$\angle ADC = 26^{\circ} + 46^{\circ} = 72^{\circ}$$

$$\therefore AC = AD$$
 and $\angle ADC = 72^{\circ} = \angle ACD$ (base \angle , isos. \triangle)

$$\therefore$$
 $\angle CAD = 180^{\circ} - 72^{\circ} \times 2 = 36^{\circ} (\angle s \text{ sum of } \Delta)$

$$\therefore AC = AE \text{ and } \angle CAE = 36^{\circ} + 60^{\circ} = 96^{\circ}$$

$$\therefore \angle AEC = (180^{\circ} - 96^{\circ}) \div 2 = 42^{\circ} (\angle s \text{ sum of } \Delta)$$

$$\angle CED = 60^{\circ} - 42^{\circ} = 18^{\circ}$$

$$\angle BCE = 60^{\circ} - 18^{\circ} - 23^{\circ} = 19^{\circ}$$

$$c = 19$$

G1.4 It is given that $4\cos^4\theta + 5\sin^2\theta - 4 = 0$, where $0^\circ < \theta < 360^\circ$. If the maximum value of θ is d, find the value of d.

$$4\cos^{4}\theta + 5\sin^{2}\theta - 4 = 0 \Rightarrow 4\cos^{4}\theta + 5(1-\cos^{2}\theta) - 4 = 0 \Rightarrow 4\cos^{4}\theta - 5\cos^{2}\theta + 1 = 0$$

$$(4\cos^{2}\theta - 1)(\cos^{2}\theta - 1) = 0$$

$$\cos^2 \theta = \frac{1}{4} \text{ or } 1$$

$$\Rightarrow$$
 cos $\theta = \frac{1}{2}$, $-\frac{1}{2}$, 1 or -1.

$$\theta = 60^{\circ}, 300^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}.$$

The maximum value of
$$\theta = 300^{\circ}$$

$$d = 300^{\circ}$$

G2.1 It is given that the lengths of the sides of a triangle are 6, 8, and 10.

If the area of the triangle is a, find the value of a.

$$6^2 + 8^2 = 36 + 64 = 100 = 10^2$$

It is a right angled triangle.

The area of the triangle = $6 \times 8 \div 2 = 24$

$$a = 24$$

G2.2 Given that $f\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}$ and f(4)=b, find the value of b.

Reference: 1987 FG8.2, 2002 HI10

Let
$$y = x + \frac{1}{x}$$

$$y^2 - 2 = x^2 + \frac{1}{x^2}$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$$
$$= y(y^{2} - 3) = y^{3} - 3y$$

$$f(y) = y^3 - 3y$$

$$b = f(4) = 4^3 - 3(4) = 52$$

G2.3 Given that $2002^2 - 2001^2 + 2000^2 - 1999^2 + \dots + 4^2 - 3^2 + 2^2 - 1^2 = c$, find the value of c.

Reference: 1997 HI5, 2004 HI1, 2015 FI3.2, 2015 FG4.1

$$c = (2002 + 2001)(2002 - 2001) + (2000 + 1999)(2000 - 1999) + \dots + (4+3)(4-3) + (2+1)(2-1)$$

$$c = 4003 + 3999 + \dots + 7 + 3$$

$$=\frac{4003+3}{2}\times1001=2005003$$

G2.4 PQRS is a square, PTU is an isosceles triangle, and

 $\angle TPU = 30^{\circ}$. Points T and U lie on QR and RS respectively. P

The area of $\triangle PTU$ is 1. If the area of PQRS is d, find the value of d.

Let
$$PT = a = PU$$

$$\frac{1}{2}a^2\sin 30^\circ = 1$$

$$\Rightarrow a = 2$$

$$\Delta PSU \cong \Delta PQT$$
 (RHS)

Let
$$PS = x = PQ$$
; $SU = y = QT$

$$\angle SPU = \angle OPT = 30^{\circ} \text{ (corr. } \angle s \cong \Delta \text{)}$$

$$x = PU\cos 30^\circ = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$$

$$d = \text{area of } PQRS = \sqrt{3}^2 = 3$$

G3.1 If
$$\frac{2002^3 + 4 \times 2002^2 + 6006}{2002^2 + 2002} = a$$
, find the value of a.

$$a = \frac{2002(2002^2 + 4 \times 2002 + 3)}{2002(2002 + 1)}$$

$$= \frac{(2002 + 1)(2002 + 3)}{2002 + 1}$$

$$= 2005$$

G3.2 It is given that the real numbers x and y satisfy the relation $y = \frac{x}{2x-1}$.

If the minimum value of $\frac{1}{x^2} + \frac{1}{v^2}$ is b, find the value of b.

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{x^2} + \frac{(2x-1)^2}{x^2}$$
$$= \frac{4x^2 - 4x + 2}{x^2}$$

Let
$$T = \frac{4x^2 - 4x + 2}{x^2}$$

$$Tx^2 = 4x^2 - 4x + 2$$

$$(T-4)x^2 + 4x - 2 = 0$$

$$\dot{\Delta} = 4^2 + 4 \times 2(T - 4) \ge 0$$

$$2+T-4\geq 0$$

$$\Rightarrow T \ge 2$$

The minimum value is 2

$$b = 2$$

G3.3 Suppose two different numbers are chosen randomly from the 50 positive integers $1, 2, 3, \ldots$, 50, and the sum of these two numbers is not less than 50. If the number of ways of choosing these two numbers is c, find the value of c.

Reference: 2011 FG2.2

Possible combinations may be: (1, 49), (1, 50),

.....

$$(24, 26), (24, 27), \cdots, (24, 50),$$

$$(25, 26), (25, 27), \cdots, (25, 50),$$

(49, 50)

Total number of combinations =
$$(2 + 3 + \dots + 25) + 25 + (24 + 23 + \dots + 1)$$

= $(1 + 2 + \dots + 24) \times 2 + 24 + 25$
= $25 \times 24 + 49 = 649$

G3.4 Given that $x - y = 1 + \sqrt{5}$, $y - z = 1 - \sqrt{5}$. If $x^2 + y^2 + z^2 - xy - yz - zx = d$, find the value of d. $2d = (x - y)^2 + (y - z)^2 + (z - x)^2 = (1 + \sqrt{5})^2 + (1 - \sqrt{5})^2 + [(z - y) - (x - y)]^2$ $2d = 1 + 2\sqrt{5} + 5 + 1 - 2\sqrt{5} + 5 + [-1 + \sqrt{5} - (1 + \sqrt{5})]^2 = 12 + 4 = 16$ d = 8

G4.1 If a is the sum of all the positive factors of 2002, find the value of a.

Reference 1997 HI3, 1998 HI10

$$2002 = 2 \times 7 \times 11 \times 13$$

The positive factors may be $2^a7^b11^c13^d$, where $0 \le a, b, c, d \le 1$ are integers.

The sum of all positive factors are $(1+2)(1+7)(1+11)(1+13) = 3 \times 8 \times 12 \times 14 = 4032 = a$

G4.2 It is given that
$$x > 0$$
, $y > 0$ and $\sqrt{x}(\sqrt{x} + \sqrt{y}) = 3\sqrt{y}(\sqrt{x} + 5\sqrt{y})$. If $b = \frac{2x + \sqrt{xy + 3y}}{x + \sqrt{xy - y}}$,

find the value of b.

$$\sqrt{x}(\sqrt{x} + \sqrt{y}) = 3\sqrt{y}(\sqrt{x} + 5\sqrt{y})$$

$$\Rightarrow x + \sqrt{xy} = 3\sqrt{xy} + 15y$$

$$\Rightarrow x - 2\sqrt{xy} - 15y = 0$$

$$(\sqrt{x} + 3\sqrt{y})(\sqrt{x} - 5\sqrt{y}) = 0$$

$$\Rightarrow \sqrt{x} = 5\sqrt{y} \Rightarrow x = 25y$$

$$b = \frac{2x + \sqrt{xy} + 3y}{x + \sqrt{xy} - y} = \frac{50y + \sqrt{25y^2} + 3y}{25y + \sqrt{25y^2} - y} = \frac{58y}{29y} = 2$$

G4.3 Given that the equation ||x-2|-1|=c has only 3 integral solutions, find the value of c.

Reference: 2005 FG4.2, 2009 HG9, 2012 FG4.2, 2017 FG1.2

$$|x-2|-1 = \pm c$$

$$\Rightarrow |x-2| = 1 \pm c$$

In order that it has only 3 integral solutions

$$c = 1$$

G4.4 If d is the positive real root of the equation
$$\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} x^2 + 2 \right) + 2 \right] + 2 \right\} = 2,$$

find the value of d.

$$\frac{1}{2} \left\{ \frac{1}{2} \left[\frac{1}{2} (x^2 + 2) + 2 \right] + 2 \right\} = 2$$

$$\Rightarrow \left\{ \frac{1}{2} \left[\frac{1}{2} (x^2 + 2) + 2 \right] + 2 \right\} = 4$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{2} (x^2 + 2) + 2 \right] = 2$$

$$\left[\frac{1}{2} (\frac{1}{2} x^2 + 2) + 2 \right] = 4$$

$$\Rightarrow \frac{1}{2} (\frac{1}{2} x^2 + 2) = 2$$

$$\Rightarrow \frac{1}{2} (x^2 + 2) = 2$$

$$\Rightarrow \frac{1}{2} x^2 + 2 = 4$$

$$\Rightarrow x = \pm 2$$

$$d = \text{the positive real root} = 2$$