SI	k	2	I1	A	15	I2	P	3	I3	A	2	I4	P	4	IS	а	2
	d	1		В	3		Q	4		В	3		Q	300		b	2
	a	-6		C	4		R	10		C	45		R	2		c	-3
	t	$\frac{50}{11}$		D	8		S	112.5		D	7		S	$2\sqrt{3}$		d	35

Group Events

SG	W	$\frac{1+\sqrt{5}}{2}$	G1	m	8	G2	z	540	G3	k	$\sqrt{33}$	G4	m	13	GS	value	-1
	T	29		h	$\sqrt{13}$		R	6		v	6		n	6		$x^4 + \frac{1}{x^4}$	4036079
	S	106		x+y+z	11		k	5		value	106		abc+def	72		cot a	$\frac{99}{20}$
	k	4		Number	72		xyz	1		r	27405		p+q	2		value	$\frac{6023}{6022}$

Sample Individual Event (2007 Final Individual Event 1)

SI.1 Let
$$\sqrt{k} = \sqrt{7 + \sqrt{13}} - \sqrt{7 - \sqrt{13}}$$
, find the value of k .

$$\sqrt{k}^2 = \left(\sqrt{7 + \sqrt{13}} - \sqrt{7 - \sqrt{13}}\right)^2$$

$$k = 7 + \sqrt{13} - 2\sqrt{7^2 - \sqrt{13}^2} + 7 - \sqrt{13}$$
$$= 14 - 2\sqrt{36} = 2$$

SI.2 In Figure 1, the straight line ℓ passes though the point (k, 3) and makes an angle 45° with the x-axis. If the equation of ℓ is x + by + c = 0 and d = |1 + b + c|, find the value of d.

$$\ell : \frac{y-3}{x-2} = \tan 45^{\circ}$$

$$y-3 = x-2$$

$$x-y+1 = 0, b = -1, c = 1$$

$$x-y+1=0, b=-1, c=1$$

 $d=|1-1+1|=1$

SI.3 If
$$x - d$$
 is a factor of $x^3 - 6x^2 + 11x + a$, find the value of a .

$$f(x) = x^3 - 6x^2 + 11x + a$$

$$f(1) = 1 - 6 + 11 + a = 0$$

$$a = -6$$

SI.4 If $\cos x + \sin x = -\frac{a}{5}$ and $t = \tan x + \cot x$, find the value of t.

$$\cos x + \sin x = \frac{6}{5}$$

$$(\cos x + \sin x)^2 = \frac{36}{25}$$

$$1+2\sin x\cos x=\frac{36}{25}$$

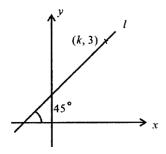
$$2\sin x \cos x = \frac{11}{25} \Rightarrow \sin x \cos x = \frac{11}{50}$$

$$d = \tan x + \cot x$$

$$= \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}$$

$$= \frac{\sin^2 x + \cos^2 x}{\sin x \cos x}$$

$$\frac{1}{\sin x \cos x} = \frac{50}{11}$$



I1.1 Let $A = 15 \times \tan 44^{\circ} \times \tan 45^{\circ} \times \tan 46^{\circ}$, find the value of A.

Similar question: 2012 FG2.1

$$A = 15 \times \tan 44^{\circ} \times 1 \times \frac{1}{\tan 44^{\circ}} = 15$$

I1.2 Let *n* be a positive integer and $20082008 \cdot 200815$ is divisible by *A*.

If the least possible value of *n* is *B*, find the value of *B*.

Reference: 2010 HG2

The given number is divisible by 15. Therefore it is divisible by 3 and 5.

The last 2 digits of the given number is 15, which is divisible by 15.

The necessary condition is:
$$20082008 \cdot 2008$$
 must be divisible by 3.

2 + 0 + 0 + 8 = 10 which is not divisible by 3.

The least possible *n* is 3: 2+0+0+8+2+0+0+8+2+0+0+8=30 which is divisible by 3.

I1.3 Given that there are C integers that satisfy the equation |x-2| + |x+1| = B, find the value of C Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2012 FG2.3

$$|x-2| + |x+1| = 3$$

If
$$x < -1$$
, $2 - x - x - 1 = 3$

$$\Rightarrow x = -1$$
 (rejected)

If
$$-1 \le x \le 2$$
, $2 - x + x + 1 = 3$

$$\Rightarrow$$
 3 = 3, always true :.

$$-1 \le x \le 2$$

If
$$2 < x, x - 2 + x + 1 = 3$$

$$\Rightarrow x = 2$$
 (reject)

$$\therefore$$
 -1 $\leq x \leq$ 2 only

 \therefore x is an integer

$$\therefore x = -1, 0, 1, 2; C = 4$$

I1.4 In the coordinate plane, the distance from the point (-C, 0) to the straight line y = x is \sqrt{D} , find the value of D.

The distance from P(x_0, y_0) to the straight line Ax + By + C = 0 is $\left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right|$.

The distance from (-4, 0) to x - y = 0 is

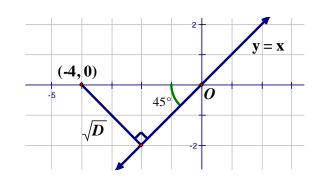
$$\sqrt{D} = \left| \frac{-4 - 0 + 0}{\sqrt{1^2 + (-1)^2}} \right| = \frac{4}{\sqrt{2}} = 2\sqrt{2} = \sqrt{8}$$

$$D = 8$$

Method 2

$$\sqrt{D} = 4 \sin 45^\circ = \frac{4}{\sqrt{2}}$$

$$D = \frac{16}{2} = 8$$



I2.1 Given that
$$P = \left[\sqrt[3]{6} \times \left(\sqrt[3]{\frac{1}{162}}\right)\right]^{-1}$$
, find the value of P .

$$P = \begin{bmatrix} \sqrt[3]{\frac{6}{162}} \end{bmatrix}^{\frac{1}{2}}$$
$$= \sqrt[3]{\frac{162}{6}}$$
$$= \sqrt[3]{27} = 3$$

I2.2 Let a, b and c be real numbers with ratios b:(a+c)=1:2 and a:(b+c)=1:P.

If
$$Q = \frac{a+b+c}{a}$$
, find the value of Q .

$$2b = a + c \dots (1), 3a = b + c \dots (2)$$

$$(1) - (2)$$
: $2b - 3a = a - b \Rightarrow 3b = 4a \Rightarrow a : b = 3 : 4$

Let a = 3k, b = 4k, sub. into (1): $2(4k) = 3k + c \Rightarrow c = 5k$

$$Q = \frac{a+b+c}{a} = \frac{3k+4k+5k}{3k} = 4$$

12.3 Let
$$R = \left(\sqrt{\sqrt{3} + \sqrt{2}}\right)^{\varrho} + \left(\sqrt{\sqrt{3} - \sqrt{2}}\right)^{\varrho}$$
. Find the value of R .

$$R = \left(\sqrt{3} + \sqrt{2}\right)^4 + \left(\sqrt{3} - \sqrt{2}\right)^4$$
$$= \left(\sqrt{3} + \sqrt{2}\right)^2 + \left(\sqrt{3} - \sqrt{2}\right)^2$$
$$= 3 + 2\sqrt{6} + 2 + 3 - 2\sqrt{6} + 2 = 10$$

12.4 Let $S = (x - R)^2 + (x + 5)^2$, where x is a real number. Find the minimum value of S.

$$S = (x - 10)^{2} + (x + 5)^{2}$$

$$= x^{2} - 20x + 100 + x^{2} + 10x + 25$$

$$= 2x^{2} - 10x + 125$$

$$= 2(x^{2} - 5x) + 125$$

$$= 2(x - 2.5)^{2} + 125 - 2 \times 2.5^{2}$$

$$= 2(x - 2.5)^{2} + 112.5 \ge 112.5$$

The minimum value of S is 112.5.

Method 2

$$S = (10 - x)^2 + (x + 5)^2$$

Let
$$a = 10 - x$$
, $b = x + 5$

a + b = 15, which is a constant

 $\therefore a^2 + b^2$ reaches its minimum when a = b = 7.5

:. Minimum
$$S = 7.5^2 + 7.5^2$$

= 112.5

I3.1 Given that $\frac{1-\sqrt{3}}{2}$ satisfies the equation $x^2 + px + q = 0$, where p and q are rational numbers.

If A = |p| + 2|q|, find the value of A.

For an equation with rational coefficients, conjugate roots occur in pairs.

That is, the other root is $\frac{1+\sqrt{3}}{2}$.

$$\frac{1 - \sqrt{3}}{2} + \frac{1 + \sqrt{3}}{2} = -p$$

$$\Rightarrow p = -1$$

$$\frac{1-\sqrt{3}}{2} \times \frac{1+\sqrt{3}}{2} = q$$

$$\Rightarrow q = -\frac{1}{2}$$

$$A = |-1| + 2 \left| -\frac{1}{2} \right| = 2$$

I3.2 Two bags U_1 and U_2 contain identical red and white balls. U_1 contains A red balls and 2 white balls. U_2 contains 2 red balls and B white balls. Take two balls out of each bag. If the probability of all four balls are red is $\frac{1}{60}$, find the value of B.

 U_1 contains 2 red and 2 white, total 4 balls. U_2 contains 2 red and B white, total 2 + B balls.

P(all 4 are red) =
$$\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2+B} \times \frac{1}{1+B} = \frac{1}{60}$$

$$20 = (2 + B)(1 + B)$$

$$B^2 + 3B - 18 = 0$$

$$(B-3)(B+6)=0$$

$$B=3$$

I3.3 Figure 1 is formed by three identical circles touching one another, the radius of each circle is B cm. If the perimeter of the shaded region is C cm, find the value of C. (Take $\pi = 3$)

Let the centres of the circles be P,

$$Q$$
 and R respectively.

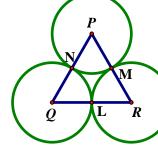
Then
$$PQ = 2B = 6 = QR = PR$$

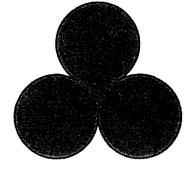
 ΔPQR is an equilateral Δ .

$$\angle P = \angle Q = \angle R = 60^{\circ}$$

Perimeter =
$$3 \times 2\pi \times 3 - 3 \times \widehat{MN}$$

= $18\pi - 3 \times 2\pi \times 3 \times \frac{60}{360}$
= $15\pi = 45$





I3.4 Let D be the integer closest to \sqrt{C} , find the value of D.

$$6 = \sqrt{36} < \sqrt{45} < \sqrt{49} = 7$$

$$6.5^2 = 42.25 < 45$$

$$D = 7$$

Method 2

$$6 = \sqrt{36} < \sqrt{45} < \sqrt{49} = 7 \implies 6 < D < 7$$

$$|45 - 36| = 9, |45 - 49| = 4$$

$$\therefore \sqrt{45}$$
 is closer to 7

$$D = 7$$

I4.1 Given that x and y are real numbers such that |x| + x + y = 10 and |y| + x - y = 10. If P = x + y, find the value of P.

If
$$x \ge 0$$
, $y \ge 0$;
$$\begin{cases} 2x + y = 10 \\ x = 10 \end{cases}$$
, solving give $x = 10$, $y = -10$ (reject)
If $x \ge 0$, $y < 0$,
$$\begin{cases} 2x + y = 10 \\ x - 2y = 10 \end{cases}$$
, solving give $x = 6$, $y = -2$
If $x < 0$, $y \ge 0$,
$$\begin{cases} y = 10 \\ x = 10 \end{cases}$$
, reject
If $x < 0$, $y < 0$;
$$\begin{cases} y = 10 \\ x - 2y = 10 \end{cases}$$
, solving give $x = 30$, $y = 10$ (reject)

$$x = 6, y = -2$$

 $y = 4 + y = 6 - 2 = 4$

14.2 In Figure 1, the shaded area is formed by two concentric circles and has area 96π cm². If the two radii differ by 2P cm and the large circle has area Q cm², find the value of Q. (Take $\pi = 3$)

Let the radii of the large and small circles be R and r respectively. $\pi(R^2 - r^2) = 96\pi$ and $R - r = 8 \dots (1)$

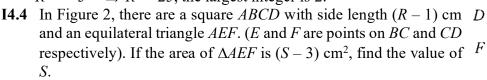
$$(R+r)(R-r) = 96 \Rightarrow (R+r) \times 8 = 96 \Rightarrow R+r = 12 \dots (2)$$

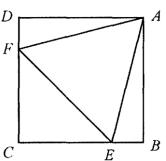
(2) + (1):
$$2R = 20 \Rightarrow R = 10$$

 $\Rightarrow Q = \pi(10)^2 = 300$

 $\Rightarrow Q = \pi(10)^2 = 300$ **I4.3** Let R be the largest integer such that $R^Q < 5^{200}$, find the value of R.

Reference: 1996 HI4, 1999 FG5.3, 2008 FG2.4 $R^{300} < 5^{200} \Rightarrow R^3 < 25$, the largest integer is 2.





Let
$$AF = x$$
 cm = $FE = AE$
 $\angle FAE = 60^{\circ}$, $\angle DAF = \angle BAE = 15^{\circ}$
 $AD = 1 = AF \cos 15^{\circ} = x \cos 15^{\circ} \Rightarrow x = \sec 15^{\circ}$

$$S - 3 = \frac{1}{2}x^2 \sin 60^\circ = \frac{1}{2} \cdot \frac{1}{\cos^2 15^\circ} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \cdot \frac{1}{1 + \cos 30^\circ} = \frac{\sqrt{3}}{2} \cdot \frac{1}{1 + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{2} \cdot \frac{2}{2 + \sqrt{3}} = 2\sqrt{3} - 3$$

$$S = 2\sqrt{3}$$

Method 2

Let
$$CE = CF = x$$
 cm

Then
$$BE = DF = (1 - x)$$
 cm

By Pythagoras' theorem,

$$AF = FE \Rightarrow 1 + (1 - x)^2 = x^2 + x^2$$

2 - 2x + x² = 2x²

$$2 - 2x + x^{2} = 2x^{2}$$
$$x^{2} + 2x - 2 = 0 \Rightarrow x^{2} = 2 - 2x$$

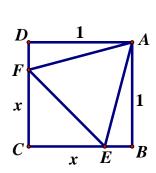
$$x^{2} + 2x - 2 = 0 \Rightarrow x^{2} = 2 - 2x$$

 $x = -1 + \sqrt{3}$

Area of $\triangle AFE$ = Area of square – area of $\triangle CEF - 2$ area of $\triangle ADF$

$$= 1 - \frac{x^2}{2} - 2 \times \frac{1 \times (1 - x)}{2} = x - \frac{x^2}{2} = x - \frac{2 - 2x}{2} = 2x - 1$$
$$= 2(-1 + \sqrt{3}) - 1 = 2\sqrt{3} - 3$$

$$S - 3 = 2\sqrt{3} - 3$$
$$S = 2\sqrt{3}$$



Individual Spare

IS.1 If all the positive factors of 28 are d_1, d_2, \ldots, d_n and $a = \frac{1}{d_1} + \frac{1}{d_2} + \cdots + \frac{1}{d_n}$, find the value of a.

Positive factors of 28 are 1, 2, 4, 7, 14, 28.
$$a = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{14} + \frac{1}{28} = 2$$

IS.2 Given that x is a negative real number that satisfy $\frac{1}{x + \frac{1}{x + 2}} = a$. If $b = x + \frac{7}{2}$, find the value of b

$$\frac{1}{x + \frac{1}{x+2}} = 2 \implies \frac{x+2}{x(x+2)+1} = 2$$

$$\Rightarrow x + 2 = 2x^2 + 4x + 2$$

$$\Rightarrow 2x^2 + 3x = 0$$

$$\Rightarrow x = -1.5 \text{ or } 0 \text{ (reject)}$$

$$b = -1.5 + 3.5 = 2$$

IS.3 Let α and β be the two roots of the equation $x^2 + cx + b = 0$, where c < 0 and $\alpha - \beta = 1$. Find the value of c.

Reference: 2016 FI1.3

$$\alpha\beta = b = 2$$
; $(\alpha - \beta)^2 = 1$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 1$$

$$\Rightarrow (-c)^2 - 4 \times 2 = 1$$

$$c = -3$$

IS.4 Let d be the remainder of $(196c)^{2008}$ divided by 97. Find the value of d.

$$[196 \times (-3)]^{2008} = 588^{2008} = (97 \times 6 + 6)^{2008}$$

=
$$(97\times6)^{2008}$$
+ $_{2008}C_1\cdot(97\times6)^{2007}\times6+...+6^{2008}$

=
$$97m+6^{2008}$$
, where m is an integer.

Note that $2^5 \times 3 = 96 = 97 - 1 \equiv -1 \pmod{97}$;

$$2 \times 3^5 = 486 = 97 \times 5 + 1 \equiv 1 \pmod{97};$$

$$\therefore 6^6 = (2^5 \times 3) \times (2 \times 3^5) \equiv -1 \pmod{97}$$

$$6^{2008} = (6^6)^{334} \times 6^4$$

$$\equiv (-1)^{334} \times 1296$$

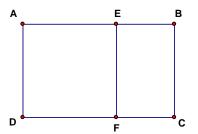
$$\equiv 97 \times 13 + 35$$

$$\equiv 35 \pmod{97}$$

$$\therefore d = 35$$

Sample Group Event (2007 Final Group Event 1)

SG.1 In Figure 1, *AEFD* is a unit square. The ratio of the length of the rectangle *ABCD* to its width is equal to the ratio of the length of the rectangle *BCFE* to its width. If the length of *AB* is *W* units, find the value of *W*.



$$\frac{W}{1} = \frac{1}{W-1}$$

$$W^2 - W - 1 = 0$$

$$\Rightarrow W = \frac{1+\sqrt{5}}{2}$$

SG.2 On the coordinate plane, there are *T* points (x, y), where x, y are integers, satisfying $x^2+y^2 < 10$, find the value of *T*. **Reference: 2002 FI4.3**

T = number of integral points inside the circle $x^2 + y^2 = 10$.

We first count the number of integral points in the first quadrant:

$$x = 1; y = 1, 2$$

$$x = 2$$
; $y = 1, 2$

Next, the number of integral points on the *x*-axis and *y*-axis

$$= 3 + 3 + 3 + 3 + 1 = 13$$

$$T = 4 \times 4 + 3 + 3 + 3 + 3 + 1$$
$$= 29$$

SG.3 Let P and P+2 be both prime numbers satisfying $P(P+2) \le 2007$. If S represents the sum of such possible values of P, find the value of S.

$$P^2 + 2P - 2007 \le 0$$

$$(P+1)^2 - 2008 \le 0$$

$$(P+1+\sqrt{2008})(P+1-\sqrt{2008}) \le 0$$

$$(P+1+2\sqrt{502})(P+1-2\sqrt{502}) \le 0$$

$$-1 - 2\sqrt{502} \le P \le -1 + 2\sqrt{502}$$

$$P$$
 is a prime $\Rightarrow 0 < P \le -1 + 2\sqrt{502}$

$$22 = \sqrt{484} < \sqrt{502} < \sqrt{529} = 23$$

$$43 < -1 + 2\sqrt{502} < 45$$

$$\therefore$$
 $(P, P+2) = (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43)$

$$S = 3 + 5 + 11 + 17 + 29 + 41 = 106$$

SG.4 It is known that $\log_{10}(2007^{2006} \times 2006^{2007}) = a \times 10^k$, where $1 \le a < 10$ and k is an integer. Find the value of k.

$$a \times 10^k = 2006 \log 2007 + 2007 \log 2006 = 2006 \times (\log 2007 + \log 2006) + \log 2006$$

$$2006 \times (\log 2006 + \log 2006) + \log 2006 < a \times 10^{k} < 2006 \times (\log 2007 + \log 2007) + \log 2007$$

$$4013 \log 2006 \le a \times 10^k \le 4013 \log 2007$$

$$4013 \log(2.006 \times 10^3) < a \times 10^k < 4013 \log(2.007 \times 10^3)$$

$$4013 (\log 2.006 + 3) < a \times 10^{k} < 4013 (\log 2.007 + 3)$$

$$4013 \log 2 + 4013 \times 3 < a \times 10^{k} < 4013 \log 3 + 3$$

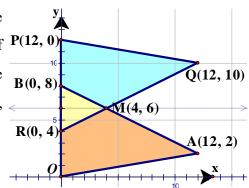
$$1.32429 \times 10^4 = 4013 \times 0.3 + 4013 \times 3 < a \times 10^k < 4013 \times 0.5 + 4013 \times 3 = 1.40455 \times 10^4$$

 $k = 4$

Created by: Mr. Francis Hung

Group Event 1

G1.1 Given that there are three points on the coordinate plane: O(0, 0), A(12, 2) and B(0, 8). A reflection of P(12, 0) $\triangle OAB$ along the straight line y = 6 creates $\triangle PQR$. If the overlapped area of $\triangle OAB$ and $\triangle PQR$ is m square units, find the value of m.



Suppose AB intersects QR at M(x, 6).

Slope of MR = slope of QR

$$\frac{6-4}{x} = \frac{10-4}{12} \Rightarrow x = 4; M(4, 6)$$

Area of the overlap $\triangle BMR = \frac{1}{2} \cdot (8-4) \times 4 = 8$; m = 8

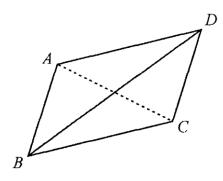
G1.2 In Figure 1, ABCD is a parallelogram with BA = 3 cm, BC = 4 cm and $BD = \sqrt{37}$ cm. If AC = h cm, find the value of h.

$$CD = BA = 3$$
 cm (opp. sides, //-gram)

In
$$\triangle BCD$$
, $\cos C = \frac{4^2 + 3^2 - \sqrt{37}^2}{2 \times 3 \times 4} = -\frac{1}{2}$

$$\cos B = \cos(180^{\circ} - C) = -\cos C = \frac{1}{2} (\text{int. } \angle \text{s } AB // DC)$$

In
$$\triangle ABC$$
, $AC = \sqrt{3^2 + 4^2 - 2 \cdot 3 \cdot 4\cos B} = \sqrt{13}$; $h = \sqrt{13}$



Method 2

By Apollonius theorem,

$$2BA^2 + 2BC^2 = AC^2 + BD^2$$

$$2 \times 3^2 + 2 \times 4^2 = h^2 + 37$$

$$h = \sqrt{13}$$

G1.3 Given that x, y and z are positive integers and the fraction $\frac{151}{44}$ can be written in the form of

$$3 + \frac{1}{x + \frac{1}{y + \frac{1}{z}}}$$
. Find the value of $x + y + z$.

$$\frac{151}{44} = 3 + \frac{19}{44} = 3 + \frac{1}{\frac{44}{19}}$$

$$=3+\frac{1}{2+\frac{6}{19}}=3+\frac{1}{2+\frac{1}{\frac{19}{6}}}=3+\frac{1}{2+\frac{1}{3+\frac{1}{6}}}$$

$$x = 2, y = 3, z = 6; x + y + z = 11$$

G1.4 When 491 is divided by a two-digit integer, the remainder is 59. Find this two-digit integer.

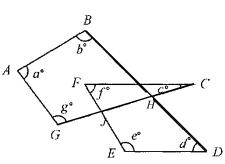
Let the number be 10x + y, where $0 < x \le 9$, $0 \le y \le 9$.

$$491 = (10x + y) \cdot Q + 59; 59 < 10x + y$$

$$491 - 59 = 432 = (10x + y) \cdot Q$$
; $432 = 72 \times 6$; the number is 72.

Group Event 2

G2.1 In Figure 1, BD, FC, GC and FE are straight lines. If z = a + b + c + d + e + f + g, find the value of z. $a^{\circ} + b^{\circ} + g^{\circ} + \angle BHG = 360^{\circ} (\angle s \text{ sum of polygon } ABHG)$ $c^{\circ} + f^{\circ} = \angle CJE \text{ (ext. } \angle \text{ of } \Delta CFJ)$ $c^{\circ} + f^{\circ} + e^{\circ} + d^{\circ} + \angle JHD = 360^{\circ} (\angle s \text{ sum of polygon } JHDE)$ $a^{\circ} + b^{\circ} + g^{\circ} + \angle BHG + c^{\circ} + f^{\circ} + e^{\circ} + d^{\circ} + \angle JHD = 720^{\circ}$ $a^{\circ} + b^{\circ} + c^{\circ} + d^{\circ} + e^{\circ} + f^{\circ} + g^{\circ} + 180^{\circ} = 720^{\circ}$ z = 540



- **G2.2** If *R* is the remainder of $1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6$ divided by 7, find the value of *R*. $x^6 + y^6 = (x + y)(x^5 x^4y + x^3y^2 x^2y^3 + xy^4 y^5) + 2y^6$ $6^6 + 1^6 = 7Q_1 + 2$; $5^6 + 2^6 = 7Q_2 + 2 \times 2^6$; $4^6 + 3^6 = 7Q_3 + 2 \times 3^6$ $2 + 2 \times 2^6 + 2 \times 3^6 = 2(1 + 64 + 729) = 1588 = 7 \times 226 + 6$; R = 6 **Method 2** $1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6 = 1^6 + 2^6 + 3^6 + (-3)^6 + (-2)^6 + (-1)^6 \mod 7$ $= 2(1^6 + 2^6 + 3^6) = 2(1 + 64 + 729) \mod 7$
- **G2.3** If 14! is divisible by 6^k , where k is an integer, find the largest possible value of k. We count the number of factors of 3 in 14!. They are 3, 6, 9, 12. So there are 5 factors of 3. k = 5

 $\equiv 2(1+1+1) \mod 7 \equiv 6 \mod 7$

G2.4 Let x, y and z be real numbers that satisfy $x + \frac{1}{y} = 4$, $y + \frac{1}{z} = 1$ and $z + \frac{1}{x} = \frac{7}{3}$.

Find the value of xyz. Reference 2010 FG2.2, 2017 FG1.1

Method 1 From (1), $x = 4 - \frac{1}{y} = \frac{4y - 1}{y}$ $\begin{cases} x + \frac{1}{y} = 4 \cdot \dots \cdot (1) \\ y + \frac{1}{z} = 1 \cdot \dots \cdot (2) \\ z + \frac{1}{x} = \frac{7}{3} \cdot \dots \cdot (3) \end{cases}$ $\Rightarrow \frac{1}{x} = \frac{y}{4y-1}$ (4) Sub. (4) into (3): $z + \frac{y}{4y-1} = \frac{7}{3}$ $z = \frac{7}{3} - \frac{y}{4y - 1}$ (5) (1)×(2): $xy + 1 + \frac{x}{z} + \frac{1}{yz} = 4$ From (2): $\frac{1}{z} = 1 - y$ $x\left(y+\frac{1}{z}\right)+\frac{1}{vz}=3$ $z = \frac{1}{1-v}$ (6) Sub. (2) into the eqt.: $x + \frac{x}{rvz} = 3$ $(5) = (6): \frac{1}{1-y} = \frac{7}{3} - \frac{y}{4y-1}$ Let a = xyz, then $x + \frac{x}{a} = 3 \cdot \cdot \cdot \cdot \cdot (4)$ $\frac{1}{1-y} = \frac{28y - 7 - 3y}{3(4y - 1)}$ $(2)\times(3): y\left(\frac{7}{3}\right) + \frac{y}{a} = \frac{4}{3} \Rightarrow y\left(\frac{7}{3} + \frac{1}{a}\right) = \frac{4}{2} \cdot \cdot \cdot \cdot \cdot (5)$ 3(4y-1) = (1-y)(25y-7) $(1)\times(3): z(4)+\frac{z}{a}=\frac{25}{3} \Rightarrow z(4+\frac{1}{a})=\frac{25}{3}\cdots\cdots(6)$ $12y - 3 = -25y^2 - 7 + 32y$ $25y^2 - 20y + 4 = 0$ (4)×(5)×(6): $a\left(1+\frac{1}{a}\right)\left(\frac{7}{3}+\frac{1}{a}\right)\left(4+\frac{1}{a}\right)=\frac{100}{3}$ $(5y-2)^2 = 0 \Rightarrow y = \frac{2}{5}$ $\frac{(a+1)(7a+3)(4a+1)}{3a^2} = \frac{100}{3}$ Sub. $y = \frac{2}{5}$ into (6): $z = \frac{1}{1 - \frac{2}{5}} = \frac{5}{3}$ which reduces to $28a^3 - 53a^2 + 22a + 3 = 0$ Sub. $y = \frac{2}{5}$ into (1): $x + \frac{5}{2} = 4 \Rightarrow x = \frac{3}{2}$ $\Rightarrow (a-1)^2(28a+3)=0$ $\therefore a = 1$ $xyz = \frac{2}{5} \times \frac{5}{3} \times \frac{3}{2} = 1$

Method 3 (1)×(2)×(3) – (1) – (2) – (3):

$$xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} - \left(x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \frac{28}{3} - \frac{22}{3} \Rightarrow xyz + \frac{1}{xyz} = 2$$

$$xyz = 1$$

Group Event 3

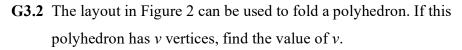
G3.1 In Figure 1, PQRS is a cyclic quadrilateral, where S is on the straight line RT and TP is tangent to the circle. If RS = 8 cm, RT = 11 cm and TP = k cm, find the value of k.

Join PR.
$$\angle SPT = \angle PRS$$
 (\angle in alt. seg.)

$$\angle STP = \angle PTR \text{ (common } \angle \text{)}$$

$$\Delta STP \sim \Delta PTR$$
 (equiangular)

$$\frac{TP}{TR} = \frac{TS}{TP}$$
 (ratio of sides, $\sim \Delta$) $\frac{k}{11} = \frac{11-8}{k}$; $k = \sqrt{33}$



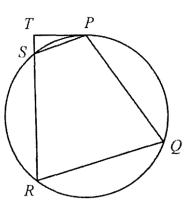
There are 8 faces.
$$f = 8$$
.

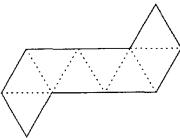
There are 8 equilateral
$$\Delta s$$
, no of sides = $8 \times 3 = 24$

Each side is shared by 2 faces. Number of edge
$$e = 12$$

By Euler formula,
$$v - e + f = 2$$

$$v - 12 + 8 = 2 \Rightarrow v = 6$$





G3.3 For arbitrary real number x, define [x] to be the largest integer less than or equal to x. For instance, [2] = 2 and [3.4] = 3. Find the value of $[1.008^8 \times 100]$.

$$1.008^8 \times 100 = (1 + 0.008)^8 \times 100 = 100(1 + 8 \times 0.008 + 28 \times 0.008^2 + ...) \approx 106.4$$

The integral value = 106

G3.4 When choosing, without replacement, 4 out of 30 labelled balls that are marked from 1 to 30, there are r combinations. Find the value of r.

$$r = C_4^{30} = \frac{30 \times 29 \times 28 \times 27}{1 \times 2 \times 3 \times 4} = 27405$$

Remark: If the question is changed to: Choose 4 out of 30 labelled balls that are marked from 1 to 30 with repetition is allowed, there are *r* combinations.

Find the value of r.

We shall divide into 5 different cases:

Case 1: All 4 balls are the same number, 30 combinations

Case 2: XXXY, where X, Y are different numbers, $2C_2^{30} = 870$ combinations

Case 3 XXYY, where X, Y are different numbers, $C_2^{30} = 435$ combinations

Case 4 XXYZ, where X,Y,Z are different numbers, $30C_2^{29} = 30 \times 29 \times 28 \div 2 = 12180$ combinations

Case 5 XYZW, where X, Y, Z, W are different numbers, $C_4^{30} = 27405$ combinations

Total number of combinations = 30 + 870 + 435 + 12180 + 27405 = 40920

G4.1 Regular tessellation is formed by identical regular m-polygons for some fixed m.

Created by: Mr. Francis Hung

Find the sum of all possible values of m.

Each interior angle =
$$\frac{180^{\circ}(m-2)}{m}$$
 (\angle s sum of polygon)

Suppose *n m*-polygons tessellate the space.

$$\frac{180^{\circ}(m-2)}{m} \cdot n = 360^{\circ} \ (\angle s \text{ at a point})$$

$$n(m-2) = 2m$$

$$n(m-2) - 2m + 4 = 4$$

$$(n-2)(m-2) = 4$$

$$m-2 = 1, 2 \text{ or } 4$$

$$m = 3, 4 \text{ or } 6$$
Sum of all possible $m = 3 + 4 + 6 = 13$

G4.2 Amongst the seven numbers 3624, 36024, 360924, 3609924, 36099924, 360999924 and 3609999924, there are n of them that are divisible by 38. Find the value of n.

 $38 = 2 \times 19$, we need to investigate which number is divisible by 19.

$$19^2 = 361$$

 $3624 = 3610 + 13$
 $36024 = 36100 - 76 = 100(19^2) - 19 \times 4$
 $360924 = 361000 - 76$
 $3609924 = 3610000 - 76$
 $36099924 = 36100000 - 76$
 $360999924 = 361000000 - 76$
 $3609999924 = 3610000000 - 76$
 $n = 6$

G4.3 If $208208 = 8^5a + 8^4b + 8^3c + 8^2d + 8e + f$, where a, b, c, d, e, and f are integers and $0 \le a, b, c$, $d, e, f \le 7$, find the value of $a \times b \times c + d \times e \times f$.

Reference: 2011 FI1.2

G4.4 In the coordinate plane, rotate point A(6, 8) about the origin O(0, 0) counter-clockwise for 20070° to point B(p, q). Find the value of p + q.

$$20070^{\circ} = 360^{\circ} \times 55 + 270^{\circ}$$

∴ $B(8, -6)$
 $p + q = 2$

Group Spare

GS.1 Calculate the value of
$$(\sqrt{2008} + \sqrt{2007})^{2007} \times (\sqrt{2007} - \sqrt{2008})^{2007}$$
.
 $(\sqrt{2008} + \sqrt{2007})^{2007} \times (\sqrt{2007} - \sqrt{2008})^{2007} = (2007 - 2008)^{2007} = (-1)^{2007} = -1$

GS.2 If
$$x - \frac{1}{x} = \sqrt{2007}$$
, find the value of $x^4 + \frac{1}{x^4}$.

$$\left(x - \frac{1}{x}\right)^2 = 2007$$

$$x^2 - 2 + \frac{1}{x^2} = 2009$$

$$\left(x^2 + \frac{1}{x^2}\right)^2 = 2009^2 = 4036081$$

$$x^4 + 2 + \frac{1}{x^4} = 4036081$$

$$x^4 + \frac{1}{x^4} = 4036079$$

GS.3 Given that
$$\cos \alpha = -\frac{99}{101}$$
 and $180^{\circ} < \alpha < 270^{\circ}$. Find the value of $\cot \alpha$.

$$\sec \alpha = -\frac{101}{99}$$

$$\tan^2 \alpha = \sec^2 \alpha - 1$$

$$= \left(-\frac{101}{99}\right)^2 - 1$$

$$= \frac{101^2 - 99^2}{99^2}$$

$$= \frac{(101 - 99) \cdot (101 + 99)}{99^2}$$

$$= \frac{400}{99^2}$$

$$\tan \alpha = \frac{20}{99}$$

$$\cot \alpha = \frac{99}{20} \quad (= 4.95)$$

GS.4 Calculate the value of $\frac{2008^3 + 4015^3}{2007^3 + 4015^3}$.

Let
$$x = 2007.5$$
, then $2x = 4015$

$$\frac{2008^{3} + 4015^{3}}{2007^{3} + 4015^{3}} = \frac{(x+0.5)^{3} + (2x)^{3}}{(x-0.5)^{3} + (2x)^{3}} = \frac{8(x+\frac{1}{2})^{3} + 8(2x)^{3}}{8(x-\frac{1}{2})^{3} + 8(2x)^{3}} = \frac{(2x+1)^{3} + (4x)^{3}}{(2x-1) + (4x)^{3}}$$

$$= \frac{(2x+1+4x)[(2x+1)^{2} - 4x(2x+1) + (4x)^{2}]}{(2x-1+4x)[(2x-1)^{2} - 4x(2x-1) + (4x)^{2}]}$$

$$= \frac{(6x+1)(4x^{2} + 4x + 1 - 8x^{2} - 4x + 16x^{2})}{(6x-1)(4x^{2} - 4x + 1 - 8x^{2} + 4x + 16x^{2})}$$

$$= \frac{(6x+1)(12x^{2} + 1)}{(6x-1)(12x^{2} + 1)} = \frac{6x+1}{6x-1}$$

$$= \frac{6023}{6022}$$