SI	A	15	I1	R	30	I2	а	16	I3	m	3	I 4	m	3
	В	3		S	120		b	$\frac{3}{2}$		n	9		n	$\frac{9}{4}$
	C	4		T	11		С	36		p	2		р	9
	D	8		$\boldsymbol{\mathit{U}}$	72		d	42		q	1141		q	8

Group Ev

SG	z	540	G1	q	3	G2	A	$-\frac{17}{13}$	G3	A	5	G4	P	$\frac{3}{8}$
	R	6		k	1		В	13		R	4018		R	$\frac{1}{2}$
	k	5		w	25		C	46		Q	$\frac{4\sqrt{5}}{5}$		S	320
	xyz	1		p	$\frac{3}{2}$		D	30		Т	$5-2\sqrt{3}$		Q	-1

Sample Individual Event (2008 Final Individual Event 1)

SI.1 Let $A = 15 \times \tan 44^{\circ} \times \tan 45^{\circ} \times \tan 46^{\circ}$, find the value of A.

Similar question 2012 G2.1

$$A = 15 \times \tan 44^\circ \times 1 \times \frac{1}{\tan 44^\circ} = 15$$

n 2008's

SI.2 Let n be a positive integer and $20082008 \cdot 200815$ is divisible by A. If the least possible value of n is B, find the value of B.

The given number is divisible by 15. Therefore it is divisible by 3 and 5.

The last 2 digits of the given number is 15, which is divisible by 15.

The necessary condition is: 20082008 ·· 2008 must be divisible by 3.

2 + 0 + 0 + 8 = 10 which is not divisible by 3.

The least possible n is 3: 2+0+0+8+2+0+0+8+2+0+0+8=30 which is divisible by 3.

SI.3 Given that there are C integers that satisfy the equation |x-2|+|x+1|=B, find the value of C Reference: 1994 HG1, 2001 HG9, 2004 FG4.2, 2008 HI8, 2008 FI1.3, 2010 HG6, 2012 FG2.3

$$|x-2| + |x+1| = 3$$

If
$$x < -1$$
, $2 - x - x - 1 = 3 \Rightarrow x = -1$ (rejected)

If
$$-1 \le x \le 2$$
, $2 - x + x + 1 = 3 \Rightarrow 3 = 3$, always true $-1 \le x \le 2$

If
$$2 < x, x - 2 + x + 1 = 3 \Rightarrow x = 2$$
 (reject)

$$-1 \le x \le 2$$
 only

 \therefore x is an integer, x = -1, 0, 1, 2; C = 4

SI.4 In the coordinate plane, the distance from the point (-C, 0) to the straight line y = x is \sqrt{D} , find the value of D.

The distance from P(x_0, y_0) to the straight line Ax + By + C = 0 is $\left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right|$.

The distance from (-4, 0) to x - y = 0 is $\sqrt{D} = \left| \frac{-4 - 0 + 0}{\sqrt{1^2 + (-1)^2}} \right| = \frac{4}{\sqrt{2}} = 2\sqrt{2} = \sqrt{8}$; D = 8

I1.1 Let a, b, c and d be the distinct roots of the equation $x^4 - 15x^2 + 56 = 0$.

If
$$R = a^2 + b^2 + c^2 + d^2$$
, find the value of R.

$$x^4 - 15x^2 + 56 = 0 \Rightarrow (x^2 - 7)(x^2 - 8) = 0$$

$$a = \sqrt{7}$$
, $b = -\sqrt{7}$, $c = \sqrt{8}$, $d = -\sqrt{8}$

$$R = a^2 + b^2 + c^2 + d^2 = 7 + 7 + 8 + 8 = 30$$

I1.2 In Figure 1, AD and BE are straight lines with AB = AC and AB // ED. If $\angle ABC = R^{\circ}$ and $\angle ADE = S^{\circ}$, find the value of S.

$$\angle ABC = 30^{\circ} = \angle ACB$$
 (base \angle isos. \triangle)

$$\angle BAC = 120^{\circ}$$
 (\angle s sum of Δ)

$$\angle ADE = 120^{\circ}$$
 (alt. \angle s $AB // ED$)

$$S = 120$$

- **I1.3** Let $F = 1 + 2 + 2^2 + 2^3 + ... + 2^S$ and $T = \sqrt{\frac{\log(1+F)}{\log 2}}$, find the value of T.
 - Reference: 2015 FI1.4, 2017 FI3.4

$$F = 1 + 2 + 2^2 + 2^3 + \dots + 2^{120}$$

$$=\frac{2^{121}-1}{2-1}=2^{121}-1$$

$$T = \sqrt{\frac{\log(1+F)}{\log 2}}$$

$$= \sqrt{\frac{\log 2^{121}}{\log 2}} = 11$$

I1.4 Let f(x) be a function such that f(n) = (n-1) f(n-1) and $f(n) \neq 0$ hold for all integers $n \geq 6$.

If
$$U = \frac{f(T)}{(T-1)f(T-3)}$$
, find the value of U .

Reference: 1999 FI5.4

$$f(n) = (n-1) f(n-1) = (n-1)(n-2)f(n-2) = \dots$$

$$U = \frac{f(11)}{(11-1)f(11-3)}$$

$$=\frac{10\times 9\times 8\times f(8)}{10\times f(8)}$$

$$= 8 \times 9 = 72$$

12.1 Let [x] be the largest integer not greater than x. If $a = \left[\left(\sqrt{3} - \sqrt{2} \right)^{2009} \right] + 16$, find the value of a.

$$0 < \sqrt{3} - \sqrt{2} = \frac{1}{\sqrt{3} + \sqrt{2}} < 1$$
$$0 < (\sqrt{3} - \sqrt{2})^{2009} < 1$$
$$\Rightarrow a = \left[(\sqrt{3} - \sqrt{2})^{2009} \right] + 16$$

= 0 + 16 = 16**12.2** In the coordinate plane, if the area of the triangle formed by the x-axis, y-axis and the line 3x + 2x = 2x = 2ay = 12 is b square units, find the value of b.

$$3x + 16y = 12$$

$$x$$
-intercept = 4

y-intercept =
$$\frac{3}{4}$$

Area =
$$b = \frac{1}{2} \cdot 4 \cdot \frac{3}{4} = \frac{3}{2}$$

12.3 Given that $x - \frac{1}{x} = 2b$ and $x^3 - \frac{1}{x^3} = c$, find the value of c.

Reference: 1990 FI2.2

$$x - \frac{1}{x} = 3$$

$$\Rightarrow x^2 - 2 + \frac{1}{x^2} = 9$$

$$\Rightarrow x^2 + \frac{1}{x^2} = 11$$

$$c = x^3 - \frac{1}{x^3}$$

$$= \left(x - \frac{1}{x}\right) \left(x^2 + 1 + \frac{1}{x^2}\right)$$

$$= 3 \times (11 + 1) = 36$$

12.4 In Figure 1, $\alpha = c$, $\beta = 43$, $\gamma = 59$ and $\omega = d$, find the value of d. $\angle BAC = \omega^{\circ}$ (\angle s in the same seg.) $\angle ACD = \beta^{\circ}$ (\angle s in the same seg.) $\angle BAD + \angle BCD = 180^{\circ}$ (opp. \angle s cyclic quad.) c + d + 43 + 59 = 180

d = 180 - 43 - 59 - 36 = 42 (: c = 36)

I3.1 Given that $\frac{4}{\sqrt{6}+\sqrt{2}} - \frac{1}{\sqrt{3}+\sqrt{2}} = \sqrt{a} - \sqrt{b}$. If m = a - b, find the value of m.

$$\frac{4}{\sqrt{6} + \sqrt{2}} - \frac{1}{\sqrt{3} + \sqrt{2}} = \frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} - \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

$$= \frac{4(\sqrt{6} - \sqrt{2})}{6 - 2} - \frac{\sqrt{3} - \sqrt{2}}{3 - 2}$$

$$= \sqrt{6} - \sqrt{2} - (\sqrt{3} - \sqrt{2})$$

$$= \sqrt{6} - \sqrt{3}$$

a = 6, b = 3; m = 6 - 3 = 3

I3.2 In figure 1, PQR is a right-angled triangle and RSTU is a rectangle. Let A, B and C be the areas of the corresponding regions. If A: B = m: 2 and A: C = n: 1, find the value of n.

$$A: B=3:2, A: C=n:1 \Rightarrow A: B: C=3n:2n:3$$

Let $TS=UR=x, QU=y$

 $\Delta PTS \sim \Delta TQU \sim \Delta PQR$ (equiangular)

 $S_{\Delta PTS}: S_{\Delta TQU}: S_{\Delta PQR} = A: C: (A+B+C) = 3n: 3: (5n+3)$ Method 2 $x^2: y^2: (x+y)^2 = 3n: 3: (5n+3)$

$$\frac{y}{x} = \frac{1}{\sqrt{n}}$$
 ... (1), $\frac{x+y}{y} = \frac{\sqrt{5n+3}}{\sqrt{3}}$... (2)

From (2):
$$\frac{x}{y} + 1 = \frac{\sqrt{5n+3}}{\sqrt{3}}$$
 ... (3)

Sub. (1) into (3):
$$\sqrt{n} + 1 = \frac{\sqrt{5n+3}}{\sqrt{3}}$$

$$\sqrt{3n} + \sqrt{3} = \sqrt{5n+3}$$
$$(\sqrt{3n} + \sqrt{3})^2 = 5n+3$$
$$3n+6\sqrt{n}+3=5n+3$$
$$6\sqrt{n} = 2n \Rightarrow n = 9$$

Let
$$SR = x$$
, $PS = z$

Join TR which bisects the area of the rectangle.

$$\frac{A}{B} = \frac{3}{2} \Rightarrow \frac{A}{\frac{B}{2}} = \frac{3}{1}$$

$$\frac{S_{\Delta TPS}}{S_{\Delta TSR}} = \frac{3}{1} \Rightarrow \frac{z}{x} = \frac{3}{1} \dots (4)$$

 $\therefore \Delta PTS \sim \Delta TQU$ (equiangular)

$$\therefore \frac{A}{C} = \frac{n}{1} \Longrightarrow \left(\frac{z}{x}\right)^2 = \frac{n}{1}$$

$$n = 3^2 = 9$$
 (by (4))

I3.3 Let x_1, x_2, x_3, x_4 be real numbers and $x_1 \neq x_2$. If $(x_1 + x_3)(x_1 + x_4) = (x_2 + x_3)(x_2 + x_4) = n - 10$ and $p = (x_1 + x_3)(x_2 + x_3) + (x_1 + x_4)(x_2 + x_4)$, find the value of p.

Reference: 2002 HI7, 2006HG6, 2014 HG7

$$x_1^2 + x_1x_3 + x_1x_4 + x_3x_4 = x_2^2 + x_2x_3 + x_2x_4 + x_3x_4 = -1$$

$$x_1^2 - x_2^2 + x_1x_3 - x_2x_3 + x_1x_4 - x_2x_4 = 0$$

$$(x_1 - x_2)(x_1 + x_2 + x_3 + x_4) = 0 \Rightarrow x_1 + x_2 + x_3 + x_4 = 0 \dots (1)$$

$$p = (x_1 + x_3)(x_2 + x_3) + (x_1 + x_4)(x_2 + x_4)$$

$$= -(x_2 + x_3)(x_2 + x_4) - (x_1 + x_3)(x_1 + x_4) \text{ (by (1), } x_1 + x_3 = -(x_2 + x_4), x_2 + x_4 = -(x_1 + x_3))$$

$$= 1 + 1 = 2$$

$$(given (x_1 + x_3)(x_1 + x_4) = (x_2 + x_3)(x_2 + x_4) = -1)$$

I3.4 The total number of students in a school is a multiple of 7 and not less than 1000.

Given that the same remainder 1 will be obtained when the number of students is divided by p+1, p+2 and p+3. Let q be the least of the possible numbers of students in the school, find the value of q.

$$p + 1 = 3$$
, $p + 2 = 4$, $p + 3 = 5$; HCF = 1, LCM = 60 $q = 60m + 1$, where m is an integer.

 $\therefore q \ge 1000$ and q = 7k, k is an integer.

$$60m + 1 = 7k$$

$$7k - 60m = 1$$

$$k = 43$$
, $m = 5$ satisfies the equation

$$k = 43 + 60t$$
; $7k \ge 1000 \Rightarrow 7(43 + 60t) \ge 1000 \Rightarrow t \ge 2 \Rightarrow \text{Least } q = 7 \times (43 + 60 \times 2) = 1141$

I4.1 Given that $x_0^2 + x_0 - 1 = 0$. If $m = x_0^3 + 2x_0^2 + 2$, find the value of m.

$$m = x_0^3 + 2x_0^2 + 2 = x_0^3 + x_0^2 - x_0 + x_0^2 + x_0 - 1 + 3 = 3$$

I4.2 In Figure 1, $\triangle BAC$ is a right-angled triangle, AB = AC = m cm. Suppose that the circle with diameter AB intersects the line BC at D, and the total area of the shaded region is $n \text{ cm}^2$. Find the value

$$AB = AC = 3$$
 cm; $\angle ADB = 90^{\circ}$ (\angle in semi-circle)

Shaded area = area of
$$\triangle ACD = \frac{1}{2}$$
 area of $\triangle ABC = \frac{1}{2} \cdot \frac{1}{2} \cdot 3 \cdot 3 \text{ cm}^2$

$$n = \frac{9}{4}$$

I4.3 Given that $p = 4n \left(\frac{1}{2^{2009}}\right)^{\log(1)}$, find the value of p.

$$p = 4n \left(\frac{1}{2^{2009}}\right)^0 = 4 \cdot \frac{9}{4} = 9$$

14.4 Let x and y be real numbers satisfying the equation $(x-\sqrt{p})^2 + (y-\sqrt{p})^2 = 1$.

If
$$k = \frac{y}{x-3}$$
 and q is the least possible values of k^2 , find the value of q.

$$(x-3)^2 + (y-3)^2 = 1 \dots (1)$$

Sub.
$$y = k(x-3)$$
 into (1): $(x-3)^2 + [k(x-3) - 3]^2 = 1$

$$(x-3)^2 + k^2(x-3)^2 - 6k(x-3) + 9 = 1$$

$$(1+k^2)(x-3)^2 - 6k(x-3) + 8 = 0 \Rightarrow (1+k^2)t^2 - 6kt + 8 = 0$$
; where $t = x-3$

For real values of *t*:
$$\Delta = 4[3^2k^2 - 8(1 + k^2)] \ge 0$$

$$k^2 \ge 8$$

The least possible value of $k^2 = q = 8$.

Method 2

The circle $(x-3)^2 + (y-3)^2 = 1$ intersects with the variable line y = k(x - 3) which passes through a fixed point (3, 0), where k is the slope of the line.

From the graph, the extreme points when the variable line touches the circle at B and C. H(3,3) is the centre of the circle.

In
$$\triangle ABH$$
, $\angle ABH = 90^{\circ}$ (\angle in semi-circle)

Let
$$\angle HAB = \theta$$
, $AH = 3$, $HB = 1$,

$$AB = \sqrt{8} = 2\sqrt{2}$$
 (Pythagoras' theorem)

$$\tan \theta = \frac{1}{\sqrt{8}}$$

Slope of
$$AB = \tan (90^{\circ} - \theta) = \sqrt{8}$$

Least possible $k^2 = q = 8$

Sample Group Event (2008 Final Group Event 2)

SG.2 If *R* is the remainder of
$$1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6$$
 divided by 7, find the value of *R*. $x^6 + y^6 = (x + y)(x^5 - x^4y + x^3y^2 - x^2y^3 + xy^4 - y^5) + 2y^6$ $6^6 + 1^6 = 7Q_1 + 2$; $5^6 + 2^6 = 7Q_2 + 2 \times 2^6$; $4^6 + 3^6 = 7Q_3 + 2 \times 3^6$ $2 + 2 \times 2^6 + 2 \times 3^6 = 2(1 + 64 + 729) = 1588 = 7 \times 226 + 6$; $R = 6$

Method 2
$$1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6 \equiv 1^6 + 2^6 + 3^6 + (-3)^6 + (-2)^6 + (-1)^6 \mod 7$$

 $\equiv 2(1^6 + 2^6 + 3^6) \equiv 2(1 + 64 + 729) \mod 7$
 $\equiv 2(1 + 1 + 1) \mod 7 \equiv 6 \mod 7$

- **SG.3** If 14! is divisible by 6^k , where k is an integer, find the largest possible value of k. We count the number of factors of 3 in 14!. They are 3, 6, 9, 12. So there are 5 factors of 3. k = 5
- SG.4 Let x, y and z be real numbers that satisfy $x + \frac{1}{y} = 4$, $y + \frac{1}{z} = 1$ and $z + \frac{1}{x} = \frac{7}{3}$.

Find the value of xyz. (Reference 2010 FG2.2)

Method 1

From (1),
$$x = 4 - \frac{1}{y} = \frac{4y - 1}{y}$$

$$\Rightarrow \frac{1}{x} = \frac{y}{4y - 1} \dots (4)$$
Sub. (4) into (3): $z + \frac{y}{4y - 1} = \frac{7}{3}$

$$z = \frac{7}{3} - \frac{y}{4y - 1} \dots (5)$$
From (2): $\frac{1}{z} = 1 - y$

$$z = \frac{1}{1 - y} \dots (6)$$

(5) = (6): $\frac{1}{1 - y} = \frac{7}{3} - \frac{y}{4y - 1}$

$$\frac{1}{1 - y} = \frac{28y - 7 - 3y}{3(4y - 1)}$$

 $3(4y - 1) = (1 - y)(25y - 7)$
 $12y - 3 = -25y^2 - 7 + 32y$

Sub.
$$y = \frac{2}{5}$$
 into (6): $z = \frac{1}{1 - \frac{2}{5}} = \frac{5}{3}$

Sub.
$$y = \frac{2}{5}$$
 into (1): $x + \frac{5}{2} = 4 \Rightarrow x = \frac{3}{2}$

$$xyz = \frac{2}{5} \times \frac{5}{3} \times \frac{3}{2} = 1$$

 $25v^2 - 20v + 4 = 0$

 $(5y-2)^2=0$

 $y = \frac{2}{3}$

Method 2

$$\begin{cases} x + \frac{1}{y} = 4 \cdot \dots \cdot (1) \\ y + \frac{1}{z} = 1 \cdot \dots \cdot (2) \\ z + \frac{1}{x} = \frac{7}{3} \cdot \dots \cdot (3) \end{cases}$$

(1)×(2):
$$xy + 1 + \frac{x}{z} + \frac{1}{yz} = 4$$

$$x\left(y+\frac{1}{z}\right)+\frac{1}{yz}=3$$

Sub. (2) into the eqt.:
$$x + \frac{x}{xyz} = 3$$

Let
$$a = xyz$$
, then $x + \frac{x}{a} = 3 \cdot \cdot \cdot \cdot (4)$

(2)×(3):
$$y\left(\frac{7}{3}\right) + \frac{y}{a} = \frac{4}{3} \Rightarrow y\left(\frac{7}{3} + \frac{1}{a}\right) = \frac{4}{3} \cdot \dots \cdot (5)$$

$$(1)\times(3): z(4) + \frac{z}{a} = \frac{25}{3} \Longrightarrow z\left(4 + \frac{1}{a}\right) = \frac{25}{3} \cdots (6)$$

(4)×(5)×(6):
$$a\left(1+\frac{1}{a}\right)\left(\frac{7}{3}+\frac{1}{a}\right)\left(4+\frac{1}{a}\right)=\frac{100}{3}$$

$$\frac{(a+1)(7a+3)(4a+1)}{3a^2} = \frac{100}{3}$$

which reduces to
$$28a^3 - 53a^2 + 22a + 3 = 0$$

⇒ $(a-1)^2(28a+3) = 0$
∴ $a = 1$

Method 3 $(1)\times(2)\times(3)-(1)-(2)-(3)$:

$$xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} - \left(x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \frac{28}{3} - \frac{22}{3} \Rightarrow xyz + \frac{1}{xyz} = 2$$

$$xyz = 1$$

G1.1 Given some triangles with side lengths a cm, 2 cm and b cm, where a and b are integers and $a \le 2 \le b$. If there are q non-congruent classes of triangles satisfying the above conditions, find the value of q.

When a = 1, possible b = 2

When a = 2, possible b = 2 or 3

 $\therefore q = 3$

G1.2 Given that the equation $|x| - \frac{4}{x} = \frac{3|x|}{x}$ has k distinct real root(s), find the value of k.

When x > 0: $x^2 - 4 = 3x \Rightarrow x^2 - 3x - 4 = 0 \Rightarrow (x + 1)(x - 4) = 0 \Rightarrow x = 4$

When x < 0: $-x^2 - 4 = -3x \Rightarrow x^2 - 3x + 4 = 0$; $D = 9 - 16 < 0 \Rightarrow$ no real roots.

k = 1 (There is only one real root.)

G1.3 Given that x and y are non-zero real numbers satisfying the equations $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$ and $x - \frac{1}{2}$

y = 7. If w = x + y, find the value of w.

The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144$

Sub. $y = \frac{144}{x}$ into x - y = 7: $x - \frac{144}{x} = 7 \Rightarrow x^2 - 7x - 144 = 0 \Rightarrow (x + 9)(x - 16) = 0$

x = -9 or 16; when x = -9, y = -16 (rejected : \sqrt{x} is undefined); when x = 16; y = 9w = 16 + 9 = 25

Method 2 The first equation is equivalent to $\frac{x-y}{\sqrt{xy}} = \frac{7}{12} \Rightarrow \sqrt{xy} = 12 \Rightarrow xy = 144 \dots$ (1)

 $\therefore x - y = 7 \text{ and } x + y = w$

$$\therefore x = \frac{w+7}{2}, y = \frac{w-7}{2}$$

Sub. these equations into (1): $\left(\frac{w+7}{2}\right)\left(\frac{w-7}{2}\right) = 144$

 $w^2 - 49 = 576 \implies w = \pm 25$

: From the given equation $\frac{\sqrt{x}}{\sqrt{y}} - \frac{\sqrt{y}}{\sqrt{x}} = \frac{7}{12}$, we know that both x > 0 and y > 0

 $\therefore w = x + y = 25$ only

G1.4 Given that x and y are real numbers and $\left|x - \frac{1}{2}\right| + \sqrt{y^2 - 1} = 0$.

Let p = |x| + |y|, find the value of p.

Reference: 2005 FI4.1, 2006 FI4.2, 2011 FI4.3, 2013 FI1.4, 2015 HG4, 2015 FI1.1

Both $\left|x-\frac{1}{2}\right|$ and $\sqrt{y^2-1}$ are non-negative numbers.

The sum of two non-negative numbers = 0 means each of them is zero

$$x = \frac{1}{2}$$
, $y = \pm 1$; $p = \frac{1}{2} + 1 = \frac{3}{2}$

G2.1 Given $\tan \theta = \frac{5}{12}$, where $180^{\circ} \le \theta \le 270^{\circ}$. If $A = \cos \theta + \sin \theta$, find the value of A.

$$\cos \theta = -\frac{12}{13}, \sin \theta = -\frac{5}{13}$$

$$A = -\frac{12}{13} - \frac{5}{13} = -\frac{17}{13}$$

G2.2 Let [x] be the largest integer not greater than x.

If
$$B = \left[10 + \sqrt{10 + \sqrt{10 + \sqrt{10 + \cdots}}}\right]$$
, find the value of B .

Reference: 2007 FG2.2 ...
$$x \ge 3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3}}}}}$$
 ...

Let
$$y = \sqrt{10 + \sqrt{10 + \sqrt{10 + \cdots}}}$$

 $y^2 = 10 + \sqrt{10 + \sqrt{10 + \sqrt{10 + \cdots}}} = 10 + y$
 $y^2 - y - 10 = 0$
 $y = \frac{1 + \sqrt{41}}{2}$ or $\frac{1 - \sqrt{41}}{2}$ (rejected)
 $6 < \sqrt{41} < 7 \Rightarrow \frac{7}{2} < \frac{1 + \sqrt{41}}{2} < 4$
 $13.5 < 10 + \sqrt{10 + \sqrt{10 + \sqrt{10 + \cdots}}} < 14; B = 13$

- **G2.3** Let $a \oplus b = ab + 10$. If $C = (1 \oplus 2) \oplus 3$, find the value of C. $1\oplus 2 = 2 + 10 = 12$; $C = 12\oplus 3 = 36 + 10 = 46$
- **G2.4** In the coordinate plane, the area of the region bounded by the following lines is D square units, find the value of D.

$$L_1$$
: $y - 2 = 0$
 L_2 : $y + 2 = 0$
 L_3 : $4x + 7y - 10 = 0$
 L_4 : $4x + 7y + 20 = 0$

It is easy to show that the bounded region is a parallelogram ABCD with vertices A(-1.5, -2), B(6,-2), C(-1,2), C(-8.5,2).

The area
$$D = |6 - (-1.5)| \times |2 - (-2)| = 7.5 \times 4 = 30$$

G3.1 Let [x] be the largest integer not greater than x.

If
$$A = \left[\frac{2008 \times 80 + 2009 \times 130 + 2010 \times 180}{2008 \times 15 + 2009 \times 25 + 2010 \times 35} \right]$$
, find the value of A .

Reference: 2008 FGS.4 Calculate the value of $\frac{2008^3 + 4015^3}{2007^3 + 4015^3}$

Let
$$a = 2009$$
, $b = 130$, $c = 25$

$$\frac{2008 \times 80 + 2009 \times 130 + 2010 \times 180}{2008 \times 15 + 2009 \times 25 + 2010 \times 35} = \frac{(a-1)(b-50) + ab + (a+1)(b+50)}{(a-1)(c-10) + ac + (a+1)(c+10)}$$

$$= \frac{ab - b - 50a + 50 + ab + ab + b + 50a + 50}{ac - c - 10a + 10 + ac + ac + c + 10a + 10}$$

$$= \frac{3ab + 100}{3ac + 20} = \frac{3 \cdot 2009 \cdot 130 + 100}{3 \cdot 2009 \cdot 25 + 20} = \frac{783610}{150695} = 5 + d$$

where 0 < d < 1; A = 5

G3.2 There are *R* zeros at the end of $\underbrace{99...9}_{2009 \text{ of } 9's} \times \underbrace{99...9}_{2009 \text{ of } 9's} + 1\underbrace{99...9}_{2009 \text{ of } 9's}$, find the value of *R*.

$$\underbrace{99...9}_{2009 \text{ of } 9's} \times \underbrace{99...9}_{2009 \text{ of } 9's} + 1\underbrace{99...9}_{2009 \text{ of } 9's} = \underbrace{\left(1 \underbrace{0...0}_{2009 \text{ of } 0's} - 1\right) \times \left(1 \underbrace{0...0}_{2009 \text{ of } 0's} - 1\right) + \left(2 \underbrace{0...0}_{2009 \text{ of } 0's} - 1\right)}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009} - 1}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} = \underbrace{\left(10^{2009} - 1\right) \left(10^{2009} - 1\right) + 2 \times 10^{2009}}_{2009 \text{ of } 0's} =$$

$$R = 4018$$

G3.3 In Figure 1, a square of side length Q cm is inscribed in a semi-circle of radius 2 cm. Find the value of Q.

$$Q^2 + \left(\frac{Q}{2}\right)^2 = 4$$
 (Pythagoras' Theorem)
 $5Q^2 = 16$
 $Q = \frac{4}{\sqrt{5}} = \frac{4\sqrt{5}}{5}$

G3.4 In Figure 2, the sector OAB has radius 4 cm and $\angle AOB$ is a right angle. Let the semi-circle with diameter OB be centred at I with IJ//OA, and IJ intersects the semi-circle at K. If the area of the shaded region is $T \text{ cm}^2$, find the value of T. (Take $\pi = 3$)

$$OI = 2$$
 cm, $OJ = 4$ cm
 $\cos \angle IOJ = \frac{OI}{OJ} = \frac{1}{2}$

$$\angle IOJ = 60^{\circ}$$

$$S_{BIJ} = S_{\text{sector }OBJ} - S_{\Delta OIJ}$$

$$= (\frac{1}{2} \cdot 4^2 \cdot \frac{\pi}{3} - \frac{1}{2} \cdot 2 \cdot 4 \sin 60^\circ) \text{cm}^2$$

$$= (\frac{8\pi}{3} - 2\sqrt{3}) \text{ cm}^2$$

Shaded area =
$$S_{BIJ} - S_{BIK}$$

= $\left(\frac{8\pi}{3} - 2\sqrt{3} - \frac{1}{4}\pi \cdot 2^2\right) \text{cm}^2$
= $\left(\frac{5\pi}{3} - 2\sqrt{3}\right) \text{cm}^2$

$$T = 5 - 2\sqrt{3}$$

G4.1 Let *P* be a real number. If $\sqrt{3-2P} + \sqrt{1-2P} = 2$, find the value of *P*.

$$(\sqrt{3-2P})^2 = (2-\sqrt{1-2P})^2$$

$$3-2P = 4-4\sqrt{1-2P}+1-2P$$

$$4\sqrt{1-2P} = 2$$

$$4(1-2P) = 1$$

$$P = \frac{3}{8}$$

G4.2 In Figure 1, let AB, AC and BC be the diameters of the corresponding three semi-circles. If AC = BC = 1 cm and the area of the shaded region is $R \text{ cm}^2$. Find the value of R.

$$AB = \sqrt{2}$$

Shaded area = $R \text{ cm}^2 = S_{\text{circle with diameter }AC} - 2 S_{\text{segment }AC}$

$$R = \pi \left(\frac{1}{2}\right)^2 - \left[\frac{1}{2}\pi \cdot \left(\frac{\sqrt{2}}{2}\right)^2 - \frac{1}{2}\cdot 1^2\right] = \frac{1}{2}$$

G4.3 In Figure 2, AC, AD, BD, BE and CF are straight lines. If $\angle A + \angle B + \angle C + \angle D = 140^{\circ}$ and a+b+c=S, find the value of S.

$$\angle CFD = \angle A + \angle C \text{ (ext. } \angle \text{ of } \Delta \text{)}$$

$$\angle AEB = \angle B + \angle D$$
 (ext. \angle of Δ)

$$a^{\circ} = \angle A + \angle AEB = \angle A + \angle B + \angle D$$
 (ext. \angle of Δ)

$$c^{\circ} = \angle D + \angle CFD = \angle D + \angle A + \angle C \text{ (ext. } \angle \text{ of } \Delta)$$

$$b^{\circ} + \angle A + \angle D = 180^{\circ} (\angle \text{s sum of } \Delta)$$

$$a^{\circ} + b^{\circ} + c^{\circ} = \angle A + \angle B + \angle D + 180^{\circ} - (\angle A + \angle D)$$
$$+ \angle D + \angle A + \angle C$$

$$= \angle A + \angle B + \angle C + \angle D + 180^{\circ}$$

$$S = a + b + c = 140 + 180 = 320$$

G4.4 Let
$$Q = \log_{2+\sqrt{2^2-1}} \left(2 - \sqrt{2^2 - 1}\right)$$
, find the value of Q .

$$Q = \frac{\log(2 - \sqrt{3})}{\log(2 + \sqrt{3})}$$

$$= \frac{\log(2 - \sqrt{3})}{\log(2 + \sqrt{3}) \cdot \frac{(2 - \sqrt{3})}{(2 - \sqrt{3})}}$$

$$= \frac{\log(2 - \sqrt{3})}{\log \frac{1}{2 - \sqrt{3}}}$$

$$= \frac{\log(2 - \sqrt{3})}{-\log(2 - \sqrt{3})} = -1$$

Method 2
$$Q = \log_{2+\sqrt{3}} \left(2 - \sqrt{3}\right) \cdot \frac{\left(2 + \sqrt{3}\right)}{\left(2 + \sqrt{3}\right)}$$

= $\log_{2+\sqrt{3}} \frac{1}{\left(2 + \sqrt{3}\right)}$
= $\log_{2+\sqrt{3}} \left(2 + \sqrt{3}\right)^{-1} = -1$

