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In ΔABC, squares ABPQ, ACRS are drawn outwards as shown. The lines BR, CP intersect at H. 

Prove that AH⊥BC. 

Let A be the reference point. 

ABb =
�

; ACc =� ; AHh =
�

; APp =� ; AQq =�  

ARr =� ; ASs =�  

Suppose BH : HR = x : 1 – x; CH : HP = y : 1–y 
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To prove AH⊥BC 
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[sb cos(A + 90°) – qc cos(A + 90°)] 

 = 0   (∵s = c, q = b) 

∴ AH⊥BC 


