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ROW AND COLUMN SPACE OF A MATRIX; RANK; F 1A
APPLICATIONS TO FINDING BASES
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formed from the columns of A are called the column vectors of A. The subspace
of R” spanned by the row vectors is cafled the row space of A and the subspace
of R™ spanned by the column vectors is called the column space of A.

Example 37
Let

The row vectors of A are
r, =02, 1,0 and r; = (3. —1,4)

and the column vectors of 4 are

I

rasb

Theorem 10, Elementammrow operations do not change the row space of a matriv

Proof of Theorem 10.  Suppose that the row vectors of a matrix Aarery,r,,..., Iy
and let B be obtained from A by performing an elementary row operation. We
shall show that every vector in the row space of B is also in the row space of 4,
and conversely that every vector in the row space of 4 is in the row space of B..
We can then conclude that 4 and B have the same row space.

Consider the possibilities. If the row operation is a row interchange, then B
and A have the same row vectors, and consequently the same row space. If the
row operation is multiplication of a row by a scalar or addition of a multiple of
one row to another, then the row vectors ey, 1y, . . ., 1, of B are linear combinations
of ry, Fy,. .., ty; thus they lie in the row space of 4. Since a vector space is closed

under addition and scalar multiplication, all linear combinations of r{, 13, ..., 1),
will also lie in the row space of A. Therefore each vector in the row space of B

‘is in the row space of A4.

Since B is obtained from A by performing a row operation, 4 can be obtained
from B by performing the inverse operation (Section 1.7). Thus the argument above
shows that row space of A is contained in the row space of B.

Theorem 11. The nonzero row vectors in a row-echelon form of a matrix A form
g basis for the row space of A.
Example 38
Find a basis for the space spanned by the vectors
v, =(1,-2,0,0,3) v, =(2 =5 ~3,-26 vy =(0,5,15,10,0)
v, = (2,6, 18, 8, 6)

Solution. The space spanned by these vectors is the row space of the matrix

1 -2 0 0 3
2 -5 -3 =2 6
0 S 15 10 0
2 6 18 8 6

Putting this matrix in row-echelon form we obtain (verily):

I =2 0 0 3
0 1 3 2 0
0 0 1 10
0 0 0 0 o0

The nonzero row vectors in this matrix are
w] = (1) '—anyoa 3) W, = (O’ 1)3a210) Wy = (O,Oa l» 1»0)

These form a basis for the row space and consequently a basis for the space spanned

by vy, V3, v3. and v,.



Example 39
Find a basis for the column space of
i 0 1 i
A=1|3 2 5 H
0 4 4 —4
Solution. Transposing we obtain
1 3 0]
N I B
SR R
11 —4

and reducing to row-cchelon formy vields (verify)

|1 3 0
o1 2
o0 0

0 0

0

Thus the vectors (1, 3, 0y und (0, 1, 2) form a basis for the row space of At or

equivalently
1

0
w, = |3 and wy = |l
g 2

form a basis for the column space of 4.

Theorem 12. If A is any matrix, then the row space and column space of A have the
sume dimension.

Proof of Theorem 12, Denote the row vectors of
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Suppose the row space of 4 has dimension k and that S = {b;,b,,..., b} is a

basis for the row space, where b; = (b, b;, . . ., b;,). Since S is a basis for the row
space, each row vector is expressible as a linear combination of by, b,, .. ., b,; thus
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r; = by + cby + o+ cyby (@11

Iy = lebl + CmZbZ + 0+ kabk

Since two vectors in R" are equal if and only if corresponding components are
equal$ we can equate the jth component on each side of (4.11) to obtain

aU = Cllbl,] + Clzsz 4+ o+ clkbkj
aZj = L'z‘bu + szsz + 4 C2kbkj

a,,,j = leblj + szsz + e 4 S"‘k-bfj
or equivalently Ty
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The left side of this equation is the jth column vector of 4,and j = 1,2;...,nis
arbitrary; therefore each column vector of A lies in the space spanned by the k
vectors on the right side of (4.12). Thus the column space of 4 has dimension <k.

Since )
k = dimirow space of A)

we have _
dim{column spi.ce ol 4} < dimirow spice of A). (4.13)

Sincé the matrix A is completely arbitrary, this same conctusion applies to A",
that is
dimitcotumn spiee of ') < dimtrow space of /') (4.14)
But transposing a matix converts columns o rows and rows o columns so that
column space of- A" = row space of 4

and
row space of A4 = column space of 4

Thus (4.14) can be rewrtten as
dimirow space of ) < dim(column space of A).
From this result and (4.13) we conclude that

dim(row space of A} = dim(colunn spuce of 4).



Theorem 13. If A is an n x n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c} A isrow equivalent to I,

(d) Ax = b is consistent for every n x 1 matrix b.

(e) det(A) # 0 Definition. The dimension of the row and column space of a matrix A is called

(1) A has rank n| the rank of A.

{g) The row vectors of A are linearly independent.

(h) The column vectors of A are linearly independent.

Proof. We shall prove the equivalence by establishing the following chain of

implications: (a) = (b) = (c} = {«).

(u) = (b): Assume A is invertible and let X, be any solution to AX = (. Thus:
AX, = 0. Multiplying both sides of this equation by A ™! gives A" 1(AX ) = 4710,
or (A7'A)X, =0, or 1X, = 0, or Xo = 0. Thus AX = 0 has only the trivial
solution.

(b) = (¢): Let AX = 0 be the matrix form of the system

Ay Xy + QX + 00 4+ apx, =0
Uy Xy + daaXy + -0+ dgeN, = 0

: e A (1.8)
Uy X+ QuaXg + 0+ dpyX, =0

and assume the system has only the trivial solution. If we solve by Gauss-Jordan

elimination, then the system of equations corresponding to the reduced row-
echelon form of the augmented matrix wiil be

X, =0
X2 = 0
. (1.9)
x, =0
Thus the augmented matrix
Wy tigs o dy, 0
sy tan o dy, 0
g iy o g ”J

for {1.8) can be reduced to the augmented matrix

o o0 - 0o
O 10 00
o0 1 -~ 00
0040 - 10

for (1.9) by a sequence of elementary row operations. If we disregard the last column
(of zeros) in each of these matrices, we cin conclude that .1 can be reduced to I,
by a sequence of elementary row opcrations; that is, 4 is row equivalent to /,.
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(¢) = (a): Assume -“ms row equivalent to I, so that 4 can be reduced to I, by a
finite sequence of e.#entary row operations. By Theorem 8 cach of these opera-
tions can be accomplished by multiplving on the left by an appropriate elementary
matrix. Thus, we can find elementary matrices E, E,, ..., F, such that

E - EE A =1 (1.10)
By Theorem 9, E,, E,, ..., E, are invertible. Multiplying both sides of equation
(1.10) on the left successively by Eg '.. .., E7 ', ET ' we obtain

A=EE; - EJ', = ECVESY B! (1.11)

Since (1.11) expresses A as a product of invertible matrices, we can conclude that
A is invertible.

REMARK. Because I, is in reduced row-echelon form and because the reduced
row-echelon form of a matrix A i1s unique, part (¢) of Theorem 10 is equivalent 10
stating that {, is the reduced row-echelon form of A.

Proof. Since we proved in Theorem 10 that («), (h). and (¢) are equivalent, it will
be sufficient to prove (¢) = {d} and td} == {a).

(a) = (d): 1f Aisinvertibleand Bisauy n x| matrix then ¥ = 47! Bisasolution
of AX = B by Theorem 11. Thus X == B is consistent.

(d) = (a): 1f the system AX = B is consistent for every n x 1 matrix B then, in
particular, the systems

1 0 0
0 | 0
AX = {0, ax=|o|, . Ax =0
0 0 1

will be consistent. Let X', be a solution of the first system, X, a solution of the
second system, . . ., and X, a solution of the last system. and let us formann x n
matrix C having these solutions as columns. Thus C has the form

C = [‘Yl } ‘XZ ’I e : "Yn]
As discussed in Example 17, the successive columns of the product AC will be

AX,, AN, ... AX,

Thus
1 0 0
0 0
AC = [AX, | AX, | --- i ax,)=l0 o - 0}=1I
o 0 - 1

By part (b) of Theorem 12 it follows that C = 4~ '. Thus A is invertible.



Proof, Weshallshow that(c),(f),(g) and (h) are equivalent by prov*®the sequence
of implications (¢) = (/') = (g) = (h) = (c). This will complete the proof since we
already know that {c) is equivalent to (a), (b), (d), and (e).

{(¢) = (f) Since A is row equivalent to [,, and I, has n nonzero rows, the row
space of 4 is n-dimensional by Theorem 11. Thus A has rank n.

(f) = (g) Since A has rank n, the row space of A is n dimensional. Since the n
“row vectors of A span the row space of A, it follows from Theorem 9 in Section 4.5
that the row vectors of A are linearly independent.

(g) = (0 Assume the row vectors of A are linearly independerit-Thus the row space
of A is n-dimensional. By Theorem 12 the column space of 4 is also n-dimensional.
Since the column vectors of A span the column space, the column vectors of 4
are linearly independent by Theorem 9 in Section 4.5,

(h) = (¢} Assume the column vectors of A are linearly independent. Thus the
column space of A is n-dimensional and consequently the row space of A4 is n-
dimensional by Theorem 12. This means that the reduced row-echelon form of 4
has n nonzero rows, that is all rows are nonzero. As noted in Example 24 of
Section 2.3 this implies that the reduced row-echelon form of A is I,. Thus 4 is

row equivalent to I,
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