Ceva's Theorem (Vectors)

Created by Mr. Francis Hung on 21 April 2011

1. Let \vec{a} , \vec{b} , \vec{c} be the corresponding position vectors of \vec{A} , \vec{B} and \vec{C} respectively. If \vec{C} lies on the line \vec{AB} , prove that $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ with $\lambda + \mu = 1$.

Proof Let AC : CB = m : n, where m and n are any scalar.

$$\vec{c} = \frac{n\vec{a} + m\vec{b}}{m+n} = \frac{n}{m+n}\vec{a} + \frac{m}{m+n}\vec{b}$$

$$= \lambda \vec{a} + \mu \vec{b}, \text{ where } \lambda = \frac{n}{m+n} \text{ and } \mu = \frac{m}{m+n}$$

$$\lambda + \mu = \frac{n}{m+n} + \frac{m}{m+n} = \frac{m+n}{m+n} = 1$$

Last updated: 07.08.2021

2. Let \vec{a} , \vec{b} , \vec{c} be the corresponding position vectors of \vec{A} , \vec{B} and \vec{C} respectively such that \vec{A} , \vec{B} and \vec{C} are not collinear. If \vec{D} lies in the plane of \vec{A} , \vec{B} and \vec{C} , show that

$$\overrightarrow{OD} = \overrightarrow{d} = \lambda \overrightarrow{a} + \mu \overrightarrow{b} + \nu \overrightarrow{c}$$
 with $\lambda + \mu + \nu = 1$.

ProofAs shown in the figure, produce *CD* to *X* on *AB*.

By example 1,
$$\overrightarrow{OX} = p\vec{a} + q\vec{b}$$
 with $p + q = 1$ and $\overrightarrow{OD} = r\overrightarrow{OX} + s\vec{c}$ with $r + s = 1$

$$= r(p\vec{a} + q\vec{b}) + s\vec{c}$$

$$= rp\vec{a} + rq\vec{b} + s\vec{c}$$

$$= \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}$$
where $\lambda = rp$, $\mu = rq$, $\nu = s$ and $\lambda + \mu + \nu = rp + rq + s$

and
$$\lambda + \mu + \nu = rp + rq + s$$

= $r(p+q) + s$
= $r + s = 1$

The proof is completed.

3. In $\triangle ABC$, D, E, F are points on BC, CA and AB respectively. AD, BE and CF are concurrent at

F

P. Then
$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1$$

Proof: By the result of 2, $\vec{p} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c}$ with $\lambda + \mu + \nu = 1$.

$$\vec{p} - \lambda \vec{a} = \mu \vec{b} + \nu \vec{c}$$

$$\frac{\vec{p} - \lambda \vec{a}}{1 - \lambda} = \frac{\mu \vec{b} + \nu \vec{c}}{1 - \lambda}$$

$$\frac{\vec{p} - \lambda \vec{a}}{1 - \lambda} = \frac{\mu \vec{b} + \nu \vec{c}}{\mu + \nu} \dots (1)$$

LHS of (1) is a point G on AP produced

such that $AP : PG = 1 - \lambda : \lambda$

RHS of (1) is a point H on BC such that

 $BH:HC=v:\mu$

В

In a similar manner, $\vec{p} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c} \Rightarrow \vec{p} - \mu \vec{b} = \lambda \vec{a} + \nu \vec{c}$

$$\frac{\vec{p} - \mu \vec{b}}{1 - \mu} = \frac{\lambda \vec{a} + \nu \vec{c}}{\lambda + \nu} \quad \dots (2)$$

BP produced intersects AC at E which means that BP : $PE = 1 - \mu$: μ and CE : $EA = \lambda$: ν

Similarly, $\vec{p} = \lambda \vec{a} + \mu \vec{b} + \nu \vec{c} \Rightarrow \vec{p} - \nu \vec{c} = \lambda \vec{a} + \mu \vec{b}$

$$\frac{\vec{p} - \nu \vec{c}}{1 - \nu} = \frac{\lambda \vec{a} + \mu \vec{b}}{\lambda + \mu} \quad(3)$$

CP produced intersects *AB* at *F* which means that CP : PF = 1 - v : v and $AF : FB = \mu : \lambda$

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = \frac{v}{\mu} \cdot \frac{\lambda}{v} \cdot \frac{\mu}{\lambda} = 1$$

The proof is completed.

Please refer to the other proof of Ceva's Theorem in Geometry:

http://www.hkedcity.net/ihouse/fh7878/Geometry/others/Ceva-Menelaus.pdf