5 Linear Transformations

Definition. If $F: V \to W$ is a function from the vector space V into the vector space W, then F is called a *linear transformation* if

- (i) $F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in V.
- (ii) $F(k\mathbf{u}) = kF(\mathbf{u})$ for all vectors \mathbf{u} in V and all scalars k.

PZZd

To illustrate $F: \mathbb{R}^2 \to \mathbb{R}^3$ be the function defined by (5.1).

$$\hat{F}(y) = (x, x + y, x - y)$$
 (5.1)

$$F(\mathbf{u} + \mathbf{v}) = (x_1 + x_2, [x_1 + x_2] + [y_1 + y_2], [x_1 + x_2] - [y_1 + y_2])$$

$$= (x_1, x_1 + y_1, x_1 - y_1) + (x_2, x_2 + y_2, x_2 - y_2)$$

$$= F(\mathbf{u}) + F(\mathbf{v})$$

Also, if k is a scalar, $k\mathbf{u} = (kx_1, ky_1)$, so that

$$F(k\mathbf{u}) = (kx_1, kx_1 + ky_1, kx_1 - ky_1)$$

= $k(x_1, x_1 + y_1, x_1 - y_1)$
= $kF(\mathbf{u})$

Thus F is a linear transformation.

If $F: V \to W$ is a linear transformation, then for any v_1 and v_2 in V and any scalars k_1 and k_2 , we have

$$F(k_1\mathbf{v}_1 + k_2\mathbf{v}_2) = F(k_1\mathbf{v}_1) + F(k_2\mathbf{v}_2) = k_1F(\mathbf{v}_1) + k_2F(\mathbf{v}_2)$$

Similarly, if v_1, v_2, \dots, v_n are vectors in V and k_1, k_2, \dots, k_n are scalars, then

$$F(k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_n\mathbf{v}_n) = k_1F(\mathbf{v}_1) + k_2F(\mathbf{v}_2) + \dots + k_nF(\mathbf{v}_n) \quad (5.2)$$

We now give some further examples of linear transformations.

Example 1

PZZC

Let A be a fixed $m \times n$ matrix. If we use matrix notation for vectors in \mathbb{R}^m and \mathbb{R}^n , then we can define a function $T: \mathbb{R}^n \to \mathbb{R}^m$ by

$$T(\mathbf{x}) = A\mathbf{x}$$

Observe that if x is an $n \times 1$ matrix, then the product Ax is an $m \times 1$ matrix; thus T maps R^n into R^m . Moreover, T is linear; to see this, let u and v be $n \times 1$ matrices and let k be a scalar. Using properties of matrix multiplication, we obtain

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
 and $A(k\mathbf{u}) = k(A\mathbf{u})$

or equivalently

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 and $T(k\mathbf{u}) = kT(\mathbf{u})$

We shall call the linear transformation in this example multiplication by A. Linear transformations of this kind are called matrix transformations.

As a special case of the previous example, let θ be a fixed angle, and $T: \mathbb{R}^2 \to \mathbb{R}^2$ be multiplication by the matrix

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

If v is the vector

$$\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$

then

$$T(\mathbf{v}) = A\mathbf{v} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

Geometrically, T(v) is the vector that results if v is rotated through an angle θ .

To see this, let ϕ be the angle between v and the positive x axis, and let

$$\mathbf{v}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

be the vector that results when v is rotated through an angle θ (Figure 5.1). We shall show $\mathbf{v}' = T(\mathbf{v})$. If r denotes the length $\phi(\mathbf{v})$, then

$$x = r \cos \phi$$
 $x = r \sin \phi$

Similarly, since \mathbf{v}' has the same length as \mathbf{v} , we have

$$x' \sim r \cos(\theta + \phi)$$
 $x' \approx r \sin(\theta + \phi)$

Therefore

$$\mathbf{v} = \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} r \cos(\theta + \phi) \\ r \sin(\theta + \phi) \end{bmatrix}$$

$$= \begin{bmatrix} r \cos \theta \cos \phi + r \sin \theta \sin \phi \\ r \sin \theta \cos \phi + r \cos \theta \sin \phi \end{bmatrix}$$

$$= \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta - \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

The linear transformation in this example is called the *rotation of* R^2 through the angle θ .

Figure 5.1

5.2 PROPERTIES OF LINEAR TRANSFORMATIONS; KERNEL AND RANGE

Theorem 1. If $T: V \to W$ is a linear transformation, then:

- (a) T(0) = 0
- (b) $T(-\mathbf{v}) = -T(\mathbf{v})$ for all \mathbf{v} in V
- (c) $T(\mathbf{v} \mathbf{w}) = T(\mathbf{v}) T(\mathbf{w})$ for all \mathbf{v} and \mathbf{w} in V

Proof. Let v be any vector in V. Since 0v = 0 we have

$$T(0) = T(0v) = 0T(v) = 0$$

which proves (a).

Also,
$$T(-v) = T((-1)v) = (-1)T(v) = -T(v)$$
, which proves (b). Finally, $v - w = v + (-1)w$; thus

$$T(\mathbf{v} - \mathbf{w}) = T(\mathbf{v} + (-1)\mathbf{w})$$

$$= T(\mathbf{v}) + (-1)T(\mathbf{w})$$

$$= T(\mathbf{v}) - T(\mathbf{w})$$

Definition. If $T: V \to W$ is a linear transformation, then the set of vectors in V that T maps into 0 is called the **kernel** (or **nullspace**) of T; it is denoted by $\ker(T)$. The set of all vectors in W that are images under T of at least one vector in V is called the **range** of T; it is denoted by R(T).

Example 12

Let $T: V \to W$ be the zero transformation. Since T maps every vector into 0, $\ker(T) = V$. Since 0 is the only possible image under T, R(T) consists only of the zero vector.

Theorem 2. If $T: V \to W$ is a linear transformation then:

- (a) The kernel of T is a subspace of V.
- (b) The range of T is a subspace of W.

Proof.

(a) To show that ker(T) is a subspace, we must show it is closed under addition and scalar multiplication. Let v_1 and v_2 be vectors in ker(T), and let k be any scalar. Then

$$T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2) \qquad (00 \quad \top \text{ in Pinous})$$
$$= 0 + 0 = 0$$

so that $\mathbf{v_1} + \mathbf{v_2}$ is in $\ker(T)$. Also

$$T(k\mathbf{v}_1) = kT(\mathbf{v}_1) = k\mathbf{0} = \mathbf{0}$$

so that $k\mathbf{v}_1$ is in $\ker(T)$.

(b) Let w_1 and w_2 be vectors in the range of T. To prove the poart we must show that $w_1 + w_2$ and kw_1 are in the range of T for any scalar k; that is, we must find vectors a and b in V such that $T(a) = w_1 + w_2$ and $T(b) = kw_1$.

Since \mathbf{w}_1 and \mathbf{w}_2 are in the range of T, there are vectors \mathbf{a}_1 and \mathbf{a}_2 in V such that $T(\mathbf{a}_1) = \mathbf{w}_1$ and $T(\mathbf{a}_2) = \mathbf{w}_2$. Let $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$ and $\mathbf{b} = k\mathbf{a}_1$. Then

$$T(\mathbf{a}) = T(\mathbf{a}_1 + \mathbf{a}_2) = T(\mathbf{a}_1) + T(\mathbf{a}_2) = \mathbf{w}_1 + \mathbf{w}_2$$

and

$$T(\mathbf{b}) = T(k\mathbf{a}_1) = kT(\mathbf{a}_1) = k\mathbf{w}_1$$

which completes the proof.

Example 15

Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 , where $v_1 = (1, 1, 1)$, $v_2 = (1, 1, 0)$, $v_3 = (1, 0, 0)$, and let $T: R^3 \to R^2$ be a linear transformation such that

$$T(\mathbf{v}_1) = (1, 0)$$
 $T(\mathbf{v}_2) = (2, -1)$ $T(\mathbf{v}_3) = (4, 3)$

Find T(2, -3, 5).

Solution. We first express $\mathbf{v} = (2, -3, 5)$ as a linear combination of $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (1, 0, 0)$. Thus

$$(2, -3, 5) = k_1(1, 1, 1) + k_2(1, 1, 0) + k_3(1, 0, 0)$$

or on equating corresponding components

$$k_1 + k_2 + k_3 = 2 k_1 + k_2 = -3 k_1 = 5$$

which yields $k_1 = 5$, $k_2 = -8$, $k_3 = 5$ so that

$$(2, -3, 5) = 5v_1 - 8v_2 + 5v_3$$

Thus

$$T(2, -3, 5) = 5T(v_1) - 8T(v_2) + 5T(v_3)$$

= 5(1, 0) - 8(2, -1) + 5(4, 3)
= (9, 23)

5.3 MATRICES OF LINEAR TRANSFORMA ONS

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ x_1 - x_2 \end{bmatrix}$$

then

$$T(\mathbf{e}_1) = T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix} \quad \text{and} \quad T(\mathbf{e}_2) = T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\-1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2\\1 & -1 \end{bmatrix}$$

$$\uparrow \quad \uparrow$$

$$T(\mathbf{e}_1) \ T(\mathbf{e}_2)$$

More generally, if

$$T(\mathbf{e}_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, T(\mathbf{e}_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, T(\mathbf{e}_n) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

then

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)$$
(5.6)

We shall show that the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is multiplication by A. To see this, observe first that

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$

Therefore, by the linearity of T,

$$T(\mathbf{x}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2) + \dots + x_n T(\mathbf{e}_n)$$
 (5.7)

On the other hand

$$A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix}$$

$$= x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{mn2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

$$= x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2) + \cdots + x_n T(\mathbf{e}_n)$$
 (5.8)

Comparing (5.7) and (5.8) yields $T(\mathbf{x}) = A\mathbf{x}$, that is, T is multiplication by A. We shall refer to the matrix A in (5.6) as the standard matrix for T.

Example 19

Find the standard matrix for the transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_3 \\ x_1 \end{bmatrix}$$

Solution.

$$T(\mathbf{e}_1) = T\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} \qquad T(\mathbf{e}_2) = T\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad T(\mathbf{e}_3) = T\left(\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

Using $T(e_1)$, $T(e_2)$, and $T(e_3)$ as column vectors, we obtain

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

As a check, observe that

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_3 \\ x_1 \end{bmatrix}$$

which agrees with the given formula for T.

6 Eigenvalues, Eigenvectors

Definition. If A is an $n \times n$ matrix, then a nonzero vector \mathbf{x} in \mathbb{R}^n is called an eigenvector of A if $A\mathbf{x}$ is a scalar multiple of \mathbf{x} ; that is

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of A and x is said to be an eigenvector *corresponding* to λ .

To find the eigenvalues of an $n \times n$ matrix A we rewrite $A\mathbf{x} = \lambda \mathbf{x}$ as

$$Ax \sim \lambda Ix$$

or equivalently

$$(\lambda I - A)\mathbf{x} = \mathbf{0} \tag{6.1}$$

For λ to be an eigenvalue, there must be a nonzero solution of this equation. However, by Theorem 13 of Section 4.6. Equation 6.1 will have a nonzero solution if and only if

$$\det(AI - A) = 0$$

This is called the *characteristic equation* of A; the scalars satisfying this equation are the eigenvalues of A.

Example 1

The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of

$$A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

corresponding to the eigenvalue $\lambda = 3$ since

$$A\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}$$

Example 2

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$

Solution. Since

$$\lambda I - A = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} \lambda - 3 & -2 \\ 1 & \lambda \end{bmatrix}$$

and

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - 3 & -2 \\ 1 & \lambda \end{bmatrix} = \lambda^2 - 3\lambda + 2$$

the characteristic equation of A is

$$\lambda^2 - 3\lambda + 2 = 0$$

The solutions of this equation are $\lambda = 1$ and $\lambda = 2$; these are the eigenvalues of A.

Example 4

Find the eigenvalues of

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Solution. As in the preceding examples

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda - 2 & -1 & 0 \\ -3 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 4 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

The eigenvalues of A must therefore satisfy the cubic equation

$$\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0 \tag{6.2}$$

$$(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0$$

$$\lambda = 4$$
 $\lambda = 2 + \sqrt{3}$ and $\lambda = 2 - \sqrt{3}$

Theorem 1. If A is an $n \times n$ matrix, then the following are equivalent.

- (a) λ is an eigenvalue of A.
- (b) The system of equations $(\lambda I A)x = 0$ has nontrivial solutions.
- (c) There is a nonzero vector \mathbf{x} in \mathbb{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$.
- (d) λ is a real solution of the characteristic equation $det(\lambda I A) = 0$.

Now that we know how to find eigenvalues we turn to the problem of finding eigenvectors. The eigenvectors of A corresponding to an eigenvalue λ are the nonzero vectors that satisfy $A\mathbf{x} = \lambda \mathbf{x}$. Equivalently the eigenvectors corresponding to λ are the nonzero vectors in the solution space of $(\lambda I - A)\mathbf{x} = \mathbf{0}$. We call this solution space the *eigenspace* of A corresponding to λ .

Example 5

Find bases for the eigenspaces of

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Solution. The characteristic equation of A is $(\lambda - 1)(\lambda - 5)^2 = 0$ (verify), so that the eigenvalues of A are $\lambda = 1$ and $\lambda = 5$.

By definition

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of $(\lambda I - A)\mathbf{x} = \mathbf{0}$, that is, of

$$\begin{bmatrix} \lambda - 3 & 2 & 0 \\ 2 & \lambda - 3 & 0 \\ 0 & 0 & \lambda - 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (6.3)

If $\lambda = 5$, (6.3) becomes

$$\begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving this system yields (verify)

$$x_1 = -s \qquad x_2 = s \qquad x_3 = t$$

Thus the eigenvectors of A corresponding to $\lambda = 5$ are the nonzero vectors of the form

$$\mathbf{x} = \begin{bmatrix} -s \\ s \\ t \end{bmatrix} = \begin{bmatrix} -s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Since

$$\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

are linearly independent, they form a basis for the eigenspace corresponding to $\lambda = 5$.

If $\lambda = 1$, then (6.3) becomes

$$\begin{bmatrix} -2 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving this system yields (verify)

$$x_1 = t \qquad x_2 = t \qquad x_3 = 0$$

Thus the eigenvectors corresponding to $\lambda = 1$ are the nonzero vectors of the form

$$\mathbf{x} = \begin{bmatrix} t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

so that

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

is a basis for the eigenspace corresponding to $\lambda = 1$.

Example 7

Find a matrix P that diagonalizes

$$A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Solution. From Example 5 the eigenvalues of A are $\lambda = 1$ and $\lambda = 5$. Also from that example the vectors

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

form a basis for the eigenspace corresponding to $\lambda = 5$ and

$$\mathbf{p_3} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

is a basis for the eigenspace corresponding to $\lambda = 1$. It is easy to check that $\{p_1, p_2, p_3\}$ is linearly independent, so that

$$P = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

diagonalizes A. As a check, the reader should verify that

$$P^{-1}AP = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

There is no preferred order for the columns of P. Since the *i*th diagonal entry of $P^{-1}AP$ is an eigenvalue for the *i*th column vector of P, changing the order of the columns of P just changes the order of the eigenvalues on the diagonal of $P^{-1}AP$. Thus, had we written

$$P = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

in the last example, we would have obtained

$$P^{-1}AP = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Example 8

The characteristic equation of

$$A = \begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$$

is

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda + 3 & -2 \\ 2 & \lambda - 1 \end{bmatrix} = (\lambda + 1)^2 = 0$$

Thus $\lambda = -1$ is the only eigenvalue of A; the eigenvectors corresponding to $\lambda = -1$ are the solutions of (-1 - 1)x = 0; that is, of

$$\begin{array}{ccc} 2x_1 & 2x_2 = 0 \\ 2x_1 & 2x_2 = 0 \end{array}$$

The solutions of this system are $x_1 + t$, $x_2 = t$ (verify); hence the eigenspace consists of all vectors of the form

$$\begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Since this space is 1-dimensional, A does not have two linearly independent eigenvectors, and is therefore not diagonalizable.