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5 [inear Transformations

Definition. M F: ¥V — Wisa function from the vector space V into the vector space
W, then F is called a linear transformation if

{1} Flu + v) = F(u) + F(v) for all vectorsuand v in V.
(1) Ftku) = kF(u) for all vectors u in V and all scalars k.
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To illustrasmlet F:R? — R? be the function defined by (5.1).
Flv) = (x,x + 3, x — y) (5.1)

F(u+v) (\ + \2,[X1 +Y2]+[‘l +y2] [x, + YZ]_[VI +y2]
=X, X+ y, X = ¥) + (X2, X2 4+ ya, Xy — ys)
= Flu) + F(v)

Also, if k is a scalar, ku = (kx,, ky,), so that
Fku) = (kxy, kx, + ky,, kx, — ky,)
= k(xl;xl + Yis Xy — .\yl)
= kF(u}

Thus F is a linear transformation.
IfF:V — Wis a linear transformation, then for any v, and v, in V and any
scalars k, and k,, we have

F(k,v, + klv'z) = F(k]"]) + F(kz"z) = l\'][‘-‘(v]) + k2 (Vz)

Similarly, if vy, v,, ..., v, are vectors in Vand k, k,, . ... k, are scalars, then
F(klh -+ szz + o 4 k"v,,) = le(V‘) + kzF‘(Vz) A4 + k,,F(V,,) (52)

We now give some further examples of linear transformations.

Example 1

Let A be a fixed m x n matrix. If we usc matrix notation for vectors in R™ and
R", then we can define a function 7:R" - R™ by

T(x) = Ax

Observe that if x is an n x 1 matrix, then the product Ax is an m x 1 matrix;
thus 7 maps R" into R™ Moreover, T is linear; to see this, let u and v be n x l
matrices and let k be a scalar. Using properties of matrix multiplication, we obtain

Au+v) = Au+ Av  and  A(ku) = k(Au)
or equivalently
Tu +v)=T(@) + T(v) and T(kw) = kT(u)

We shall call the linear transformation in this example multiplication by A. Linear
transformations of this kind are called matrix transformations.



Example 2 FZ3C(
As a special case of the previous example, let 0 be a fixed angle, andaat T:R? — R?

be multiplication by the matrix
4= c.os 0 —sind
sin 0 cos 0
H
Y =
}7
_ cos@ —sinf || x xcos — ysin @
TW = Av = [sin 0 cos 0] l:y] B [x sin 8 + y cos O:I

Geometrically, T'(v) is the vector that results if v is rotated tbgo_lggh an angle 6.

I v is the vector

then

To see this, et ¢ be the angle between v and the positive x axis. and let

’ “'\.'-
Vo=
.‘l'

be the vector that results when v is rotated through an angle 0 (Figure 5.1). We
shall show v = T'(v). It r denaotes the length -0 v, then
v Cos @ \ s b

Similarly, since v has the simc length as sy, we iave

A eostd e ) Vo sl o+ )

, N reostth o)
Yy = S
v Pt D)
reosfhcos ¢ - rsin Usin g
rsin 1 cos by cos O sin ¢

Therelore

"vcos ) — ysm ()]

xsin 4y eos ()

“contl —sin
win f) cos )

= oAy e Ty
The linear transtormation in this example is called the rotation of R thr ough

the angle 0.
Ay

(xy)

\ £

Figure 5.1
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5.2 PROPEBZIES OF LINEAR TRANSFORMATIONS;
KERNELWND RANGE

Theorem 1. If T:V — W is a lincar transformation, then:

(a) T©O) =0
(b) T(—v) = —=T(v) foralivinV
(©) T(v — w) = T(v) — T(w) forallvandwinl
Proof. Let v be any veciqr in V. Since Ov = 0 we have
T(©0) = T(Ov) = 0T(v) = 0

which proves (a).
Also, T(—v) = T((—1)¥) = (= 1)T(v) = — T(v), which proves (b).

Finally,v — w = v + {— 1)w; thus
Ty = w) = T(v + (= w)
= T(v) + (= 1)T(w)
= T(v) — T(w)

Definition. If T:V — W is a linear transformation, then the set of vectors in V that
Tmaps into 0 is called the kernel (or nullspace) of T it is denoted by ker(T). The
set of all vectors in W that are images under T of at least one vector in V is called

the range of T'; it is denoted by R(T).

Example 12
Let T:V — W be the zero transformation. Since T maps every vector into 0,
ker(T) = V. Since 0 is the only possible image under T. R(T) consists only of the

Zero vector.

Theorem 2. 1/ TV — Wis a linear tramformation then:

(@) The kernel of 1is « subspace of V',
(b) The range of 1'is « subspace of W,

Proof.
(a) To show that ker(7T) is a subspace. we must show it is closed under

addition and scalar multiplication. Let v, and v, be vectors in ker(7T), and let

k be any scalar. Then
Tivy + vy T(vy) + T(vy) Kao T 4o Brores )

04 0=10
so that ¥, + v, s in ker( 7). Also
Tlkvy) = kTv,) = kO = 0

so that kv, is in ker(T).
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(b) Let wy and w, be vectors in the range of T. To prove thamoart we must
show that w, + w, and kw, are in the range of T for any scalar k; vmat is, we must
find vectors a and b in ¥ such that T(a) = w, + w, and T(b) = kw,.

Since w, and w, are in the range of T, there are.vectors a, and a, in V such
that T(a,) = w, and 7(a,) = w,. Leta == a, + a, and b = ka,. Then

Ty = T{a; + ay) = Tiay) + T(ay) = w, + w,
and
T(b) = T(ka,) = kT(a,) = kw,

which completes the proof.

Example 15
Consider the basis S = {v;,v;, v3} for R where v, = (I, 1,1), v, = (1, 1,0),
v = (1,0,0), and let T:R® — R? be a linear transformation such that

T() = (1,00 T =2 ~1)  T(vs) =43

Find T(2, —3, 5).

Solution. We first express v = (2, —3, 5) as a linear combination of v, = (1, I, 1),
vy, = (1, 1,0), and v, = (1,0, 0). Thus

(2, -3,5) = ky(1, 1, 1) + ky(1, 1,0) + k;(1,0,0)
or on equating corresponding components
ki + ky +ky = 2
kl + k2 = "‘3
ky = 5
which yields k; = 5,k, = —8,k; = 5o that
(2, —=3,5) = 5v; — 8v, + 5v,

Thus
T(2, =3,5) = 5T(v,) — 8T(vy) + 5T(v;)

= 5(1,0) — 8(2, —1) + 5(4,3)
= (9, 23)
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5.3 MATRICES OF LINEAR TRANSFORMZ2 ONS

()=

More generally, if

ayy ag; din
a . a oy tyy
Te) =] .2 |, T = | .7 [,.... Tle) = |.”
aml amZ amn
then
a4y, 3 P) T e
I (5:6)
Ay A2 T Qg
i 1 1
Tle,) Tlex) -+ Tie,)

We shall show that the linear transformation T:R" — R™ is mulitiplication by
A. To see this, observe frst that

Xy
X2
X = . = X€ +X262+"‘+x,,e,,
'x"
Therefore, by the linearity of T,

T(x) = x,T(ey) + x3T(ey) + -+ + x,T(e,) (.2

P 24}

On the other hand

ayy a4y 0 A [ Sldgg Ny Aoaypxy 4o+ ag,x,
Ugy dzz 7 da (V) tap Ny bodp Xy A 4 Ay,
Ax = | . . . . = . . .
ami (£} T uum__ _vxn A‘Iml-\.l + amZ-\‘Z o amn-\'n
dyy ,’”u,;' i,
tyy - o
= Xy . + \‘,} . SN
.
Uy ‘_‘urn 2. N ey .
= x,T(e)) + x;Tle;) + -+ x, Ty} (5.8)

Comparing (5.7) and (5.8) vields T(x) = Ax. that is, T is multiplication by A.
We shall refer 1o the matrix 4 in (5.6) as the srandavd matrix for T,

Example 19
Find the standard matrix {or the transformation 1 R* — R* defined by

L Xy ot N
1 X,
7*( X5 ) =T
A
Xa ll
Xa X
Solution.
1 - | 0
: 1 1o ! 0 0
Tie) =TH{0 ] = 0 Tieqy) = T {1 1 Jz 0 Tieq) = THOL = |
0 0 1
I - 0 0

Using T(e,), T{e,), and Tie;) as column vectors, we oblain

'

'l 1 0
T -1 0
A =
0 0 |
10 0
As a check, observe that
X+ xy
X
Y. — x
Ajx, [ =]7" 2
x
X3 3
§ X,

which agrees with the given formula for 7'
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6 Ligenvalues,

Eigenvectors

Definition. If 4 is an n x n matrix, then a nonzero vector x in R" is called aﬁ_j
eigenvector of A if Ax is a scalar multiple of x; that is

Ax = Ix

for some scalar A. The scalar 4 is called an eigenvalue of A and x is said to be an
eigenvector corresponding to A.

To find the eigenvalues of ian n = u matrix A wetewrite Ax = /x as

REUREVY PN
or equivalently
{71 Ax =0 {6.1)

For 4 to be an cigenvalue, there must be a nonzero solution of this equation.
However, by Theorem 13 of Section -} 6. bquation 6.} will have a nonzero solution
ifand only If

detti) - A) =0

This is called the characteristic cquation of A: the scalirs satisfying this equation
are the eigenvalues of A,

Example 1

1
The vector x = [

2_1 is an eigenvector of

S

corresponding to the eigenvalue 1 = 3 since

LI R R

Pz 4cf
Example 2

Find the eigenvalues of the matrix

Selution. Since
1 o] |3 2} [i-3 =7
I —A=2 . _
AL -4 ’[o 1_] [_—1 0_} [ ! ).}

=3 -2
det{d! — A) = tlet[/ | ] =gt e 34 2

and

the characteristic equation of A is
A2 -3 4+2=0

The solutions of this equation are ~ = 1and A = 2; these are the cigenvalues of 4.

Example 4
Find the eigenvalues of

210
A=13 2 0
0 0 4

Solution. As in the preceding examples

A—=2 =1 0
det(Al — Ay =dety -3 41 -2 0 =2 - 824+ 174~ 4
0 0 A—4

The cigenvalues of 4 must therefore satisfy the cubic equation
| B84 174 -4=0 (6.2)

(A -H -4+ =0
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Theorem 1. If A isann x nmatrix, then the following are equivalent.

{a) 4 is an eigenvalue of A.
(b) The system of equations (z1 — Nx = O has nontrivial solutions.
i

(¢) There is a nonzero vector x in R" such that Ax = £x.
(d) 2 is a real solution of the charucicristic equation det(Al — A) = 0.

Now that we know how to find cigenvalues we turn to the problem of finding
eigenvectors. The eigenvectors of . corresponding to an eigenvalue 2 are the
nonzero vectors that satisfy Ax = /,x. Equivalently the eigeavectors corresponding
to 4 are the noRzero vectors in the solution space of (A — A)x = 0. We call this
solution space the eigenspace of A corresponding to /.

Example §
Find bases for the eigenspaces of
3 =2 0
A= 2 3 0
0 0 5

Solution. The characteristic equation of A is (4 — 1)(4 - 5)* = 0 (verify), so that
the eigenvalues of A are 4 = land 4 = 5.
By definition

is an eigenvector of A corresponding (o 4 if and only if ¥ is a nontrivial solution
of (A — A)x = 0, that is, of

1-3 2 0o v o
2 A-3 0 |{x{=]0 (6.3)
0 0 A-5]{x] |0

Iri =235, (6.3) becomes

22 0]1x, 0
22 Ofix, 1 =10
00 0]]x 0

Solving this system yields (verify)

XNy = =S Xy = 8 .\:3=(
Thus the eigenvectors of A corresponding to A = § are the nonzero vectors of the
form '

-5 —s 0 -1 0
X = s = s{+10]=s 1+t O.
t 0 t 0 I
Since
— 0
1. and 0
0 |

are linearly independent, they form a basis for the eigenspace corresponding to
A=35
If A = 1, then (6.3) becomes

-2 2 0lix, 0
2 -2 O] x,] =10
0 0 —4|{xs 0
Solving this system yields (verify)
xl = [ x2 =1 X3 = 0

Thus the eigenvectors corresponding to 4 = 1 are the nonzero vectors of the form

t 1
x=|t|{=1]l
0 0
50 that
1
l
0

is a basis for the eigenspace corresponding to 4 = 1.
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Example 7
‘Find a matrix P that diagonulizes

3 -2 0
A= |-2 3 0
0 0 5

Solution. From Example 5 the eigenvalue's of Aare A = | and /. = 5. Also from
that example the vectors

-1 0
p] = ] and pz = 0
0 1
{orm a basis for the eigenspace corresponding to 4 = 5 and
1
py = |1
0

is a basis for the eigenspace corresponding to 4 = 1. It is easy to check that
Py, P2, P} s linearly independent, so that

-1 0 1
P = 1 0 1
010

diagonalizes 4. As a check, the reader should verify that

-3 4 01 3 =2 0)[-1 0 1] [500
P'4P=| 0 0 1|{-2 3 of| 1 0 1|=]0 50
{1 0jl o o s|l oo {001

There is no preferred order for the columns of P. Since the ith diagonal entry
of P7YAP is an eigenvalue for the ith column vector of P, changing the order of
the columns of P just changes the order of the eigenvalues on the diagonal of
P~ '4P, Thus, had we written

P=

O -
O - —
-0 O

in the last example, we would have obtained

50
P 1AP =10 |
00

wm O O

P 264

Example 8
The characteristic equation of

1S
. .oF 2 =2 , .
det(J] — A) = det 5 ; | ={/+ 1) =0

Thus 4 = —1 is the only cigenvalue of A5 the vigenvectors corresponding (o
s = — 1| are the solutions of ( -1 - §)x = 0; that 15, of

vy 2xy =0

X, o 2y, =0
The solutions of this systent are xy 1, v, = 1 {veniby): henee the eigenspace con-

sists of all vectors of the form

[1-

Since this space i1s I-dimensional, -1 does not have two linearly independent
eigenvectors, and 1s therefore not diagonalizable.



