Menelaus's Theorem (Vectors) By Mr. Francis Hung Last updated: 7 August 2021 In $\triangle ABC$, suppose a line cuts BC at D, AC at E and AB at F, then $\frac{BD}{CD} \cdot \frac{CE}{AE} \cdot \frac{AF}{BF} = 1$ A transversal cuts the sides BC, CA and AB of a triangle ABC in D, E and F respectively. Let $$\frac{BD}{DC} = p$$, $\frac{CE}{EA} = q$, $\frac{AF}{FB} = r$, $\overrightarrow{FA} = \vec{a}$, $\overrightarrow{FC} = \vec{c}$. - Express \overrightarrow{FE} in terms of q, \overrightarrow{a} and \overrightarrow{c} . (*a*) - Express \overrightarrow{FD} in terms of p, r, \vec{a} and \vec{c} . (b) - Hence prove that pqr = 1(*c*) (a) $$\overrightarrow{FE} = \frac{q\vec{a} + \vec{c}}{1+q}$$ (b) $\overrightarrow{FD} = \frac{\overrightarrow{FB} + p\vec{c}}{1+p}$ $$FD = \frac{1}{1+p}$$ $$= \frac{1}{r} \vec{a} + p\vec{c}$$ $$= \frac{r}{1+p}$$ $$= \frac{\vec{a} + rp\vec{c}}{1+p}$$ $$=\frac{\vec{a}+rp\vec{c}}{r+rp}$$ (c) $$\overrightarrow{FE}$$ // \overrightarrow{FD} $$k\frac{q\vec{a}+\vec{c}}{1+q} = \frac{\vec{a}+rp\vec{c}}{r+rp}$$ Compare coefficients of \vec{a} and \vec{c} . $$\begin{cases} \frac{1}{r+rp} = \frac{kq}{1+q} \cdot \dots \cdot (1) \\ \frac{rp}{r+rp} = \frac{k}{1+q} \cdot \dots \cdot (2) \end{cases}$$ $$\frac{(1)}{(2)}: \frac{1}{rp} = q$$ $$pqr = 1$$