Menelaus's Theorem (Vectors)

By Mr. Francis Hung

Last updated: 7 August 2021

In $\triangle ABC$, suppose a line cuts BC at D, AC at E and AB at F, then $\frac{BD}{CD} \cdot \frac{CE}{AE} \cdot \frac{AF}{BF} = 1$

A transversal cuts the sides BC, CA and AB of a triangle ABC in D, E and F respectively.

Let
$$\frac{BD}{DC} = p$$
, $\frac{CE}{EA} = q$, $\frac{AF}{FB} = r$, $\overrightarrow{FA} = \vec{a}$, $\overrightarrow{FC} = \vec{c}$.

- Express \overrightarrow{FE} in terms of q, \overrightarrow{a} and \overrightarrow{c} . (*a*)
- Express \overrightarrow{FD} in terms of p, r, \vec{a} and \vec{c} . (b)
- Hence prove that pqr = 1(*c*)

(a)
$$\overrightarrow{FE} = \frac{q\vec{a} + \vec{c}}{1+q}$$

(b) $\overrightarrow{FD} = \frac{\overrightarrow{FB} + p\vec{c}}{1+p}$

$$FD = \frac{1}{1+p}$$

$$= \frac{1}{r} \vec{a} + p\vec{c}$$

$$= \frac{r}{1+p}$$

$$= \frac{\vec{a} + rp\vec{c}}{1+p}$$

$$=\frac{\vec{a}+rp\vec{c}}{r+rp}$$

(c)
$$\overrightarrow{FE}$$
 // \overrightarrow{FD}

$$k\frac{q\vec{a}+\vec{c}}{1+q} = \frac{\vec{a}+rp\vec{c}}{r+rp}$$

Compare coefficients of \vec{a} and \vec{c} .

$$\begin{cases} \frac{1}{r+rp} = \frac{kq}{1+q} \cdot \dots \cdot (1) \\ \frac{rp}{r+rp} = \frac{k}{1+q} \cdot \dots \cdot (2) \end{cases}$$

$$\frac{(1)}{(2)}: \frac{1}{rp} = q$$

$$pqr = 1$$