- Find the unit vector in the direction of $-\mathbf{i} + 2\mathbf{j}$.
- Find the unit vector in the direction of 3i - 4j + 12k.

Ans.
$$-\frac{1}{\sqrt{5}}i + \frac{2}{\sqrt{5}}j$$

Ans. $\frac{3}{13}\mathbf{i} - \frac{4}{13}\mathbf{j} + \frac{12}{13}\mathbf{k}$

- 3. Find the vector with length = 3 and in the |4. same direction as $-\mathbf{i} + 2\mathbf{j}$.
- Find the vector with length = 13 which is parallel to $3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$.

Ans.
$$-\frac{3}{\sqrt{5}}\mathbf{i} + \frac{6}{\sqrt{5}}\mathbf{j}$$

Ans. $\pm (3i - 4j + 12k)$

- Let $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j}$. Find a·b.
- Let $\mathbf{a} = 3\mathbf{i} 4\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$. Find a.b.

Ans. 5

- Let $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j}$ and θ is the angle 8. between \boldsymbol{a} and \boldsymbol{b} . Find $\boldsymbol{\theta}$.
- Let $\mathbf{a} = 3\mathbf{i} 4\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and θ is the angle between **a** and **b** . Find θ .

Ans. 63.4°

Ans. 111°

- 9. of projection of **b** on **a**.
- Let $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j}$. Find the length 10. Let $\mathbf{a} = 3\mathbf{i} 4\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$. Find the length of projection of b on a.

Ans. 1

11. Let $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j}$.

Find the projection vector of **b** on **a**.

12. Let $\mathbf{a} = 3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

Find the projection vector of **a** on **b**.

Ans.
$$\frac{3}{5}i + \frac{4}{5}j$$

Ans.
$$-\frac{28}{9}\mathbf{i} - \frac{28}{9}\mathbf{j} + \frac{14}{9}\mathbf{k}$$

13. Let A = (3, 4), B = (-1, 2).

Let *E* be a point on *OA* such that $BE \perp OA$.

Find the vector \overrightarrow{EB} .

14. Let A = (3, -4, 12), B = (2, 2, -1).

Let *F* be a point on *OB* such that $AF \perp OB$.

Find the vector \overrightarrow{AF} .

Ans.
$$-\frac{8}{5}i + \frac{6}{5}j$$

Ans.
$$-\frac{55}{9}\mathbf{i} + \frac{8}{9}\mathbf{j} - \frac{94}{9}\mathbf{k}$$

- 15. Determine whether the following points are collinear. If they are not collinear, determine the shortest distance from *C* to the line determined by *AB*. Find the point *D* on the line *AB* which is nearest to *C*.
 - (a) A(1, -2, 4), B(5, -8, 6), C(-1, 1, 3).
 - (b) A(1, -2, 4), B(5, -8, 6), C(0, 1, 3).

- (a) A, B, C are collinear.
- (b) Not collinear, the shortest distance $=\frac{1}{7}\sqrt{35}$, $-\frac{5}{7}\mathbf{i} + \frac{4}{7}\mathbf{j} + \frac{22}{7}\mathbf{k}$