Supplementary Notes on Vector Components

Created by Mr. Francis Hung

Last updated: August 7, 2021

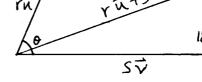
1. Given that \vec{u} and \vec{v} are 2 non-zero vectors which are not parallel.

If
$$r\vec{u} + s\vec{v} = \vec{0}$$
 then $r = s = 0$

Proof: In the figure, $r\vec{u} + s\vec{v}$ is the diagonal vector of the parallelogram.

Let θ be the angle between $r\vec{u}$ and $s\vec{v}$.

$$:: r\vec{u} + s\vec{v} = \vec{0}$$



$$\therefore |r\vec{u} + s\vec{v}|^2 = |\vec{0}|^2$$

By cosine rule,
$$|r\vec{u}|^2 + |s\vec{v}|^2 - 2|r\vec{u}| |s\vec{v}| \cos(180^\circ - \theta) = |r\vec{u} + s\vec{v}|^2 = 0$$

$$|r\vec{u}|^2 + |s\vec{v}|^2 - 2|r\vec{u}| |s\vec{v}| + 2|r\vec{u}| |s\vec{v}| (1 + \cos\theta) = 0$$

$$(|r\vec{u}| - |s\vec{v}|)^2 + 2|r\vec{u}| |s\vec{v}| (1 + \cos\theta) = 0$$
(*)

Note that the above equation (*) may be written as a + b = 0,

where
$$a = (|r\vec{u}| - |s\vec{v}|)^2$$
 and $b = 2|r\vec{u}| |s\vec{v}| (1 + \cos\theta)$

clearly
$$a \ge 0$$
 and $\cos \theta \ge -1 \Rightarrow 1 + \cos \theta \ge 0 \Rightarrow b \ge 0$,

which means that LHS = $a + b \ge 0$ but RHS = 0

This implies
$$a = 0$$
 and $b = 0$

$$|r\vec{u}| - |s\vec{v}| = 0$$
 and $2|r\vec{u}| |s\vec{v}| (1 + \cos \theta) = 0$

$$|r\vec{u}| = |s\vec{v}|$$
 and $|r\vec{u}| = 0$ or $|s\vec{v}| = 0$ (: \vec{u} , \vec{v} are not parallel, $1 + \cos \theta \neq 0$)

$$|\vec{u}| \neq 0$$
 and $|\vec{v}| \neq 0$

The above 2 equations gives r = s = 0

The method of comparing coefficients

2. Given that \vec{u} and \vec{v} are 2 non-zero vectors which are not parallel.

If
$$a\vec{u} + b\vec{v} = c\vec{u} + d\vec{v}$$
, then $a = c$ and $b = d$

Proof:
$$a\vec{u} + b\vec{v} = c\vec{u} + d\vec{v} \Rightarrow (a - c)\vec{u} + (b - d)\vec{v} = \vec{0}$$

By the result of (*),
$$r = a - c = 0$$
 and $s = b - d = 0$

$$\Rightarrow a = c \text{ and } b = d$$

The proof is completed.

Example 1 In $\triangle ABC$, P and Q lie in AB and AC respectively such that BC // PQ, use vector method

to show that
$$\frac{AP}{AB} = \frac{AQ}{AC}$$
.

(Remark: This result is known as the theorem of equal ratio)

Solution: Add the vectors on the right diagram.

$$\therefore \overrightarrow{PQ} = k \overrightarrow{BC}$$
, where k is a real constant.

$$\overrightarrow{AQ} - \overrightarrow{AP} = k(\overrightarrow{AC} - \overrightarrow{AB})$$
(*)

 $\therefore \overrightarrow{AQ}$ and \overrightarrow{AC} are in the same direction

$$\therefore \overrightarrow{AQ} = m \overrightarrow{AC} \quad \dots (1)$$

 $\therefore \overrightarrow{AP}$ and \overrightarrow{AB} are in the same direction

$$\therefore \overrightarrow{AP} = n \overrightarrow{AB} \quad \dots (2)$$

Sub. (1) and (2) into (*), $m\overrightarrow{AC} - n\overrightarrow{AB} = k\overrightarrow{AC} - k\overrightarrow{AB}$

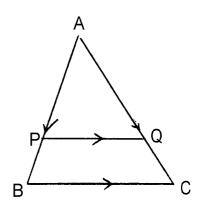
Comparing coefficients of \overrightarrow{AC} and \overrightarrow{AB}

We have m = k and n = k

$$\Rightarrow \frac{AQ}{AC} = k \text{ and } \frac{AP}{AB} = k$$

$$\Rightarrow \frac{AP}{AB} = \frac{AQ}{AC}$$

The proof is completed.



Example 2 Given that ABCD is a trapezium with $AB \parallel CD$. If H and G are the mid-points of the diagonals BD and AC respectively, show that $HG \parallel AB \parallel CD$ by vector method.

Solution: Add the vectors \vec{p} , \vec{q} and \vec{r} as shown.

::*AB* // *CD*

$$\therefore \overrightarrow{AB} = \overrightarrow{q}$$
 and $\overrightarrow{DC} = k \overrightarrow{q} = \overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}$

:: H is the mid-point of BD

$$\therefore \overrightarrow{AH} = \frac{1}{2} (\vec{q} - \vec{p})$$

:: G is the mid-point of AC

$$\therefore \overrightarrow{BG} = \frac{1}{2} (\vec{r} - \vec{q})$$

$$\overrightarrow{HG} = -\overrightarrow{AH} + \overrightarrow{q} + \overrightarrow{BG}$$

$$= -\frac{1}{2}(\vec{q} - \vec{p}) + \vec{q} + \frac{1}{2}(\vec{r} - \vec{q})$$

$$= \frac{1}{2}(\vec{p} + \vec{r})$$

$$= \frac{1}{2}(\vec{p} + \vec{q} + \vec{r} - \vec{q})$$

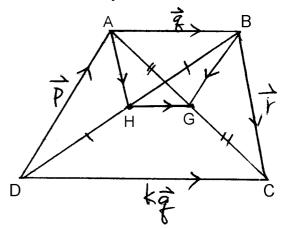
$$= \frac{1}{2}(k\vec{q} - \vec{q})$$

$$= \frac{1}{2}(k - 1)\vec{q}$$

 $\therefore \overrightarrow{HG}$ is a scalar multiple of \overrightarrow{AB} .

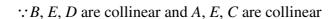
 \Rightarrow HG // AB // CD

The proof is completed.



Example 3 Given that ABCD is a parallelogram, prove that the diagonals AC and BD bisect each other at E by vector method.

Solution: Method 1 ::ABCD is a parallelogram



$$\therefore \overrightarrow{EB} = -m \overrightarrow{ED}, \quad \overrightarrow{EC} = -n \overrightarrow{EA}, \text{ where } m \text{ and } n \text{ are real constants}$$
Sub. into (1), $-m \overrightarrow{ED} + \overrightarrow{ED} = \overrightarrow{EA} - n \overrightarrow{EA}$

$$(1 - m) \overrightarrow{ED} = (1 - n) \overrightarrow{EA}$$

 \therefore EA and ED are non-zero vectors which are not parallel

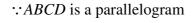
By the theorem of comparing coefficients, 1 - m = 0 and 1 - n = 0

$$m = n$$

 $\overrightarrow{EB} = -\overrightarrow{ED}, \quad \overrightarrow{EC} = -\overrightarrow{EA}$

 \therefore the diagonals AC and BD bisect each other at E.

Let O be the reference point and \vec{a} , \vec{b} , \vec{c} , \vec{d} be the corresponding position vectors of A, B, C and D respectively.



$$\therefore \overrightarrow{AD} = \overrightarrow{BC}$$

$$\vec{d} - \vec{a} = \vec{c} - \vec{b}$$

$$\vec{a} + \vec{c} = \vec{b} + \vec{d}$$

$$\frac{1}{2}(\vec{a} + \vec{c}) = \frac{1}{2}(\vec{b} + \vec{d})$$

which means that the mid-point of AC = the mid-point of BD

 \therefore the diagonals AC and BD bisect each other at E.

