Vectors Exercise 2

Created by Mr. Francis Hung

Last updated: 21 April 2011

1. Describe the surface whose equation is given by $x^2 + y^2 + z^2 - y = 0$. By using the method of completing the square,

$$x^{2} + \left(y - \frac{1}{2}\right)^{2} + z^{2} = \left(\frac{1}{2}\right)^{2}$$

$$\{(x, y, z): x^2 + \left(y - \frac{1}{2}\right)^2 + z^2 = \left(\frac{1}{2}\right)^2\}$$

The solution set represent the surface of a sphere whose centre is $\left(0, \frac{1}{2}, 0\right)$ and radius $\frac{1}{2}$.

2. Find the acute angle formed by two diagonals of a cube.

Let the cube be *ABCDEFGH* as shown.

Without loss of generality, assume the length of side = 1.

Introduce a rectangular coordinate system with

AB as x-axis, AD as y-axis and AF as z-axis.

A(0, 0, 0), B(1, 0, 0), C(1, 1, 0), D(0, 1, 0), E(0, 1, 1), F(0, 0, 1), G(1, 0, 1), A(1, 1, 1)

The two diagonals are \overrightarrow{AH} and \overrightarrow{CF} . Let the angle between them be θ .

$$\overrightarrow{AH} = (1, 1, 1) \text{ and } \overrightarrow{CF} = (0, 0, 1) - (1, 1, 0) = (-1, -1, 1)$$

$$\overrightarrow{AH} \cdot \overrightarrow{CF} = \|\overrightarrow{AH}\| \cdot \|\overrightarrow{CF}\| \cos \theta$$

$$(1, 1, 1) \cdot (-1, -1, 1) = ||(1,1,1)|||(-1,-1,1)|| \cos \theta$$

$$-1 - 1 + 1 = \sqrt{3} \cdot \sqrt{3} \cos \theta$$

$$\cos \theta = -\frac{1}{3}$$

$$\theta = 109.5^{\circ}$$

The acute angle between them is $180^{\circ} - 109.5^{\circ} = 70.5^{\circ}$

3. Determine if it is true that for any vectors a, b, c such that $a \ne 0$ and $a \cdot b = a \cdot c$, then b = c. $a \ne 0$ and $a \cdot b = a \cdot c$

$$\Leftrightarrow a \cdot (b - c) = 0$$

$$\Leftrightarrow a \perp b - c$$

It is not true in general that $a \neq 0$ and $a \cdot b = a \cdot c$, then b = c.

Counter-example: a = (1, 0, 0), b = (0, 0, 0) and c = (0, 1, 0)

Then $a \cdot b = 0 = a \cdot c$ but $b \neq c$.

4. Determine if it is true that for any three vectors $a, b, c, a \times (b \times c) = (a \times b) \times c$.

 $b \times c \perp b$ and $b \times c \perp c$

- $\therefore a \times (b \times c) \perp a$ and $a \times (b \times c) \perp b \times c$
- $\Rightarrow a \times (b \times c) \perp b \times c$ and $b \times c \perp b$ and $b \times c \perp c$
- $\Rightarrow a \times (b \times c) \perp$ lies in the plane determined by b and c.

 $a \times b \perp a$ and $a \times b \perp b$

- $\therefore (a \times b) \times c \perp c$ and $(a \times b) \times c \perp a \times b$
- \Rightarrow $(a \times b) \times c \perp a \times b$ and $a \times b \perp a$ and $a \times b \perp c$
- \Rightarrow $(a \times b) \times c \perp$ lies in the plane determined by a and b.

It is not true in general that $a \times (b \times c) = (a \times b) \times c$.

Counter-example: $i \times [j \times (i + j)] = i \times (-k) = j$

$$(i \times j) \times (i + j) = k \times (i + j) = j - i$$

$$\therefore i \times [j \times (i+j)] \neq (i \times j) \times (i+j)$$

5. Show that in the 3-space the distance d from a point P to the line through points A and B can

be expressed as
$$d = \frac{\left\| \overrightarrow{AP} \times \overrightarrow{AB} \right\|}{\left\| \overrightarrow{AB} \right\|}$$
.

$$\frac{\|\overrightarrow{AP} \times \overrightarrow{AB}\|}{\|\overrightarrow{AB}\|} = \frac{\|\overrightarrow{AP}\| \|\overrightarrow{AB}\| \sin \theta}{\|\overrightarrow{AB}\|}, \text{ where } \theta \text{ is the angle between } \overrightarrow{AP} \text{ and } \overrightarrow{AB}.$$

$$= \|\overrightarrow{AP}\| \sin \theta$$

$$= d$$

6. Find the parametric equation of the line through the origin that is parallel to the line given by x = 2t, y = -1 + t, z = 2.

$$x = 2t, y = t, z = 2$$

7. Let L be the line that passes through the point (x_0, y_0, z_0) and is parallel to v = (a, b, c), where a, b, c are nonzero. Show that a point (x, y, z) lies on the line L if and only if

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} .$$

These equations, which are called the symmetric equations of L, provides a nonparametric representation of L.

Let
$$A = (x_0, y_0, z_0), B = (x, y, z)$$

If B lies on the line L,

$$\overrightarrow{BA}$$
 is parallel to $\overrightarrow{v} \Rightarrow (x - x_0)\overrightarrow{i} + (y - y_0)\overrightarrow{j} + (z - z_0)\overrightarrow{k} = m\overrightarrow{v}$ for some real constant m $(x - x_0, y - y_0, z - z_0) = m(a, b, c)$

$$m = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
.

Conversely, if
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Let
$$m = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \implies (x - x_0, y - y_0, z - z_0) = m(a, b, c)$$

$$(x - x_0)\vec{i} + (y - y_0)\vec{j} + (z - z_0)\vec{k} = m\vec{v}$$

... The vector
$$\overrightarrow{BA}$$
 is parallel to \overrightarrow{v} the point (x_0, y_0, z_0) lies on L .