Centres of triangle (vector)

By Mr. Francis Hung

Last updated: 07 August 2021

HKDSE Sample paper (Frame 30)

14.

Figure 3

In Figure 3, $\triangle ABC$ is an acute-angled triangle, where O and H are the circumcentre and orthocentre respectively. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OH} = \mathbf{h}$.

- (a) Show that $(\mathbf{h} \mathbf{a})//(\mathbf{b} + \mathbf{c})$.
- (b) Let $\mathbf{h} \mathbf{a} = t(\mathbf{b} + \mathbf{c})$, where t is a non-zero constant. Show that
 - (i) $t(\mathbf{b} + \mathbf{c}) + \mathbf{a} \mathbf{b} = s(\mathbf{c} + \mathbf{a})$ for some scalar s,
 - (ii) $(t-1)(\mathbf{b}-\mathbf{a})\cdot(\mathbf{c}-\mathbf{a})=0.$
- (c) Express \mathbf{h} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} .

14. (a)
$$\overrightarrow{AH} = \overrightarrow{OH} - \overrightarrow{OA} = \mathbf{h} - \mathbf{a}$$

 $\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \mathbf{b} - \mathbf{c}$

:: AH is the altitude

$$\therefore AH \perp CB$$
$$(\mathbf{h} - \mathbf{a}) \perp (\mathbf{b} - \mathbf{c})$$

$$(\mathbf{b} + \mathbf{c}) \cdot (\mathbf{b} - \mathbf{c}) = |\mathbf{b}|^2 - |\mathbf{c}|^2 = 0 \ (\because O \text{ is the circumcentre } \therefore OA = OB = OC)$$

$$\therefore (b+c) \perp (b-c)$$
$$(h-a)//(b+c).$$

(b) (i) $\mathbf{h} - \mathbf{a} = t(\mathbf{b} + \mathbf{c}) \dots (1)$ where t is a non-zero constant. Using a similar method as in (a), $(\mathbf{h} - \mathbf{b})//(\mathbf{a} + \mathbf{c})$ $\mathbf{h} - \mathbf{b} = s(\mathbf{a} + \mathbf{c}) \dots (2)$ where s is a non-zero constant. (2) - (1): $\mathbf{a} - \mathbf{b} = s(\mathbf{a} + \mathbf{c}) - t(\mathbf{b} + \mathbf{c})$ $t(\mathbf{b} + \mathbf{c}) + \mathbf{a} - \mathbf{b} = s(\mathbf{c} + \mathbf{a})$ for some scalar s.

(ii)
$$t\mathbf{b} + t\mathbf{c} + \mathbf{a} - \mathbf{b} = s(\mathbf{c} + \mathbf{a})$$

 $t\mathbf{b} - t\mathbf{a} + \mathbf{a} - \mathbf{b} = s(\mathbf{c} + \mathbf{a}) - t\mathbf{a} - t\mathbf{c}$
 $(t-1)(\mathbf{b} - \mathbf{a}) = (s-t)(\mathbf{a} + \mathbf{c})$
 $(t-1)(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = (s-t)(\mathbf{a} + \mathbf{c}) \cdot (\mathbf{c} - \mathbf{a})$
 $= (s-t)(|\mathbf{c}|^2 - |\mathbf{a}|^2) = 0$

(c)
$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = \overrightarrow{AB} \cdot \overrightarrow{AC}$$

 $\therefore \Delta ABC$ is an acute-angled triangle

$$\overrightarrow{AB} \cdot \overrightarrow{AC} \neq 0$$

$$(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) \neq 0$$
By $(b)(ii)$, $(t - 1)(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) = 0$

$$\Rightarrow t = 1$$

$$\therefore \mathbf{h} - \mathbf{a} = t(\mathbf{b} + \mathbf{c}) \text{ by } (b)(i)$$

$$\mathbf{h} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

Last updated: 2021-08-07

Frame 24

Let G be the centroid and O be the circumcentre of $\triangle ABC$.

Let
$$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}, \overrightarrow{OC} = \mathbf{c}, \overrightarrow{OG} = \mathbf{g}.$$

$$\overrightarrow{OD} = \frac{1}{2} (\mathbf{b} + \mathbf{c})$$
 (: D is the mid-point of BC)

As G is the centroid, AG : GD = 2 : 1

$$\mathbf{g} = \frac{1}{3} (\mathbf{a} + 2\overrightarrow{OD}) = \frac{1}{3} (\mathbf{a} + \mathbf{b} + \mathbf{c}) \dots (**)$$

$$\overrightarrow{GA} = \mathbf{a} - \mathbf{g}, \overrightarrow{GB} = \mathbf{b} - \mathbf{g}, \overrightarrow{GC} = \mathbf{c} - \mathbf{g}$$

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \mathbf{a} - \mathbf{g} + \mathbf{b} - \mathbf{g} + \mathbf{c} - \mathbf{g}$$

$$= (\mathbf{a} + \mathbf{b} + \mathbf{c}) - 3\mathbf{g}$$

$$= 3\mathbf{g} - 3\mathbf{g} = \mathbf{0} \text{ by (***)}$$

Frame 31

Let H be the orthocentre and O be the circumcentre of $\triangle ABC$.

Let
$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OH} = \mathbf{h}$.

By the above result, $\mathbf{h} = \mathbf{a} + \mathbf{b} + \mathbf{c}$

$$\overrightarrow{HA} = \mathbf{a} - \mathbf{h}, \overrightarrow{HB} = \mathbf{b} - \mathbf{h}, \overrightarrow{HC} = \mathbf{c} - \mathbf{h}$$

$$\overrightarrow{HA} = \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{n}}, \overrightarrow{HB} = \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{n}}, \overrightarrow{HC} = \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{n}}$$

$$\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{h}} + \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{h}} + \overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{h}}$$

$$= (\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}) - 3\overrightarrow{\mathbf{h}}$$

$$= -2\overrightarrow{\mathbf{h}}$$

$$= 2\overrightarrow{HO}$$

Frame 32

When $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{h} = \mathbf{0}$, the orthocentre will overlap with the circumcentre.

:: O is the circumcentre

$$\therefore OA = OB = OC \Rightarrow |\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}|$$

$$\mathbf{c} = -(\mathbf{a} + \mathbf{b})$$

$$|\mathbf{c}|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$$

$$2\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}|^2 \Rightarrow 2\mathbf{a} \cdot \mathbf{b} = -|\mathbf{c}|^2 \dots (*)$$

In this case, $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$, $\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$, $\overrightarrow{CA} = \mathbf{a} - \mathbf{c}$

$$|\overrightarrow{AB}|^2 = (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a}) = |\mathbf{b}|^2 + |\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b}$$

= $|\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2$ by (*)

Similarly, $|\overrightarrow{BC}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2$

and
$$|\overrightarrow{CA}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2$$

 $\therefore \Delta ABC$ is an equilateral triangle.

Frame 34

Let X be any point. $\overrightarrow{OX} = \mathbf{x}$

$$\overrightarrow{XA} + \overrightarrow{XB} + \overrightarrow{XC} = \mathbf{a} - \mathbf{x} + \mathbf{b} - \mathbf{x} + \mathbf{c} - \mathbf{x}$$

$$= (\mathbf{a} + \mathbf{b} + \mathbf{c}) - 3\mathbf{x}$$

$$= 3 \left[\frac{1}{3} (\mathbf{a} + \mathbf{b} + \mathbf{c}) - \mathbf{x} \right]$$

$$= 3 \left[\overrightarrow{OG} - \overrightarrow{OX} \right]$$

$$= 3 \overrightarrow{XG}$$

Frame 36: (2006 Q18)

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$$
 and $\overrightarrow{OG} = \frac{1}{3}(\mathbf{a} + \mathbf{b} + \mathbf{c})$

$$\therefore \overrightarrow{OH} = 3\overrightarrow{OG}$$

O, G, H are collinear and OG : GH = 1 : 2

The line segment O, G, H is called the Euler line.

The 9-point circle.

Let K, L, M, N be the mid-points of HA, HB, HC, OH

respectively.
$$\overrightarrow{ON} = \frac{1}{2} \mathbf{h}$$

$$\overrightarrow{NK} = \frac{1}{2} \mathbf{a}$$
 (mid point theorem)

$$\overrightarrow{NL} = \frac{1}{2} \mathbf{b}$$
 (mid point theorem)

$$\overrightarrow{NM} = \frac{1}{2} \mathbf{c}$$
 (mid point theorem)

$$\overrightarrow{ND} = \frac{1}{2} (\mathbf{b} + \mathbf{c}) - \frac{1}{2} \mathbf{h} = -\frac{1}{2} \mathbf{a}$$

$$\overrightarrow{NE} = \frac{1}{2} (\mathbf{c} + \mathbf{a}) - \frac{1}{2} \mathbf{h} = -\frac{1}{2} \mathbf{b}$$

$$|\overrightarrow{NF} = \frac{1}{2} (\mathbf{a} + \mathbf{b}) - \frac{1}{2} \mathbf{h} = -\frac{1}{2} \mathbf{c}$$

$$\overrightarrow{PK} = \overrightarrow{NK} - \overrightarrow{NP} = \frac{1}{2} \mathbf{a} - \overrightarrow{NP}$$

$$\overrightarrow{PD} = \overrightarrow{ND} - \overrightarrow{NP} = -\frac{1}{2}\mathbf{a} - \overrightarrow{NP}$$

$$\overrightarrow{PK} \cdot \overrightarrow{PD} = (\frac{1}{2} \mathbf{a} - \overrightarrow{NP}) \cdot (-\frac{1}{2} \mathbf{a} - \overrightarrow{NP}) = 0$$

$$\left| \overrightarrow{NP} \right|^2 = \left| \frac{1}{2} \mathbf{a} \right|^2$$

Similarly,
$$|\overrightarrow{NQ}|^2 = \left|\frac{1}{2}\mathbf{b}\right|^2$$
 and $|\overrightarrow{NR}|^2 = \left|\frac{1}{2}\mathbf{c}\right|^2$

 \therefore We can use N as centre, radius $=\frac{1}{2}|\mathbf{a}|$ to draw a

circle to pass through D E, F, K, L, M, P, Q, R. This is the nine-point circle.

