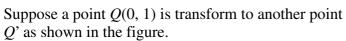
Reflection in the line $y = (\tan \alpha) x$

Created by Mr. Francis Hung on 20110420

Last updated: 07 August 2021

Suppose a point P(1, 0) is transform to another point P'(x, y) as shown in the figure.


Join PP', which intersects the line $y = (\tan \alpha) x$ at N. By the property of reflection, PP' $\perp ON$ and PN = P' $N \Delta OPN \cong \Delta OP$ 'N (S.A.S.)

$$\therefore OP' = OP = 1 \text{ (corr. sides } \cong \Delta's)$$

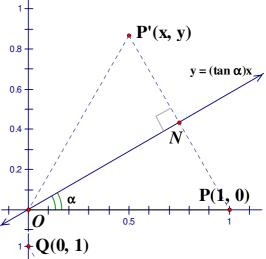
$$\angle P'ON = \alpha \text{ (corr. } \angle s \cong \Delta's)$$

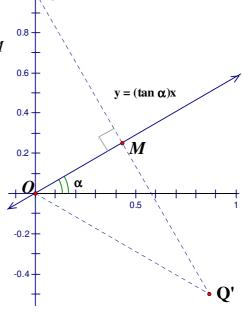
$$\angle P'OP = 2\alpha$$

$$P' = (\cos 2\alpha, \sin 2\alpha)$$

Join QQ', which intersects the line $y = (\tan \alpha) x$ at M. By the property of reflection, QQ' $\perp OM$ and QM = Q'M $\Delta OQM \cong \Delta OQ'M$ (S.A.S.)

$$\therefore OQ' = OQ = 1 \text{ (corr. sides } \cong \Delta'\text{s)}$$


$$\angle QOM = \frac{\pi}{2} - \alpha$$


$$\angle Q'OM = \frac{\pi}{2} - \alpha \quad (corr. \angle s \cong \Delta's)$$

$$\angle Q$$
'Ox-axis = $\frac{\pi}{2} - 2\alpha$

$$\therefore Q' = \left(\cos\left(\frac{\pi}{2} - 2\alpha\right), -\sin\left(\frac{\pi}{2} - 2\alpha\right)\right)$$
$$= (\sin 2\alpha, -\cos 2\alpha)$$

... The matrix of reflection is
$$\begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$$
.

