Last updated: 22 April 2011

Solve $x^2 + y^2 = z^2$ for integral solution.

The triple (x, y, z) is called Pythagorean's Triple.

Clearly (0,0,0) is a trivial solution.

If (x, y, z) is a solution, then (kx, ky, kz) are solution for any integer k.

If (x, y, z) is a solution, then (-x, -y, -z) is also a solution.

If (x, y, z) is a solution and (x, y, z) are relatively prime, then the solution is called primitive root.

Let (x, y, z) be a positive primitive root.

Theorem 1 At least one of x, y is even.

Proof: If both x and y are odd, let x = 2m + 1, y = 2n + 1; where n, m are integers.

then
$$z^2 = x^2 + y^2$$

= $4(m^2 + m + n^2 + n) + 2$

RHS is even $\Rightarrow z^2$ is even

$$\Rightarrow$$
 z is even

Let z = 2k; where k is an integer.

$$4k^2 = 4(m^2 + m + n^2 + n) + 2$$

LHS is divisible by 4 but RHS is not !!! (which is a contradiction)

 \therefore At least one of x and y is even.

WLOG let
$$y = 2a$$

Theorem 2 If (x, y) = c > 1, then c divides z.

Proof: Let
$$x = cx_1$$
, $y = cy_1$

$$x^{2} + y^{2} = z^{2} \Rightarrow c^{2}(x_{1}^{2} + y_{1}^{2}) = z^{2}$$

$$c^2$$
 divides z^2

c divides
$$z (\because c > 0)$$

Since (x, y, z) is a prime solution, therefore x and y are relatively prime. Let y be even.

Theorem 3x and z are both odd and x and z are relatively prime.

Proof: x and y are relatively prime and y is even.

x must be odd (otherwise 2 is a common factor)

 x^2 is odd and y^2 is even.

$$x^2 + y^2$$
 is odd

$$\therefore$$
 z is odd

$$\therefore$$
 z is odd

Suppose
$$(x, z) = c > 1$$

Let
$$x = cx_1, z = cz_1$$

Then
$$y^2 = z^2 - x^2$$

= $(cz_1)^2 - (cx_1)^2$

$$= (cz_1)^2 - (cx_1)^2$$
$$= c^2(z_1^2 - x_1^2)$$

$$\Rightarrow c^2$$
 divides y^2

$$\Rightarrow c \text{ divides } y$$

$$\Rightarrow$$
 c divides y and c divides x

$$\therefore c \text{ divides } (x, y) = 1 \text{ (given)}$$

$$\Rightarrow c = 1$$

Since x and z are both odd, so z + x and z - x are even.

Theorem 4
$$\left(\frac{z+x}{2}, \frac{z-x}{2}\right) = 1$$

Proof: : Both x and z are odd

$$\therefore \frac{z+x}{2}, \frac{z-x}{2}$$
 are integers.

Let
$$\frac{z+x}{2} = a$$
, $\frac{z-x}{2} = b$

x and z are relatively prime (by theorem 3)

There exists integers m, n such that mz + nx = 1(1)

$$(m+n)\left(\frac{z+x}{2}\right) + (m-n)\left(\frac{z-x}{2}\right)$$

$$= \frac{1}{2}(mz+nz+mx+nx+mz-nz-mx+nx)$$

$$= \frac{1}{2}(2mz+2nx)$$

$$= mz+nx = 1 \text{ (by (1))}$$
Therefore $\left(\frac{z+x}{2}, \frac{z-x}{2}\right) = 1$

Now
$$y^2 = z^2 - x^2$$

= $4\left(\frac{z+x}{2}\right)\left(\frac{z-x}{2}\right)$ and $\left(\frac{z+x}{2}, \frac{z-x}{2}\right) = 1$

Let $\frac{z+x}{2} = u^2$, $\frac{z-x}{2} = v^2$; where u and v are integers.

 \Rightarrow *u* and *v* are relatively prime.

So
$$\begin{cases} y^{2} = 4u^{2}v^{2} \\ z = u^{2} + v^{2} \\ x = u^{2} - v^{2} \end{cases} \Rightarrow \begin{cases} y = 2uv \\ z = u^{2} + v^{2} \\ x = u^{2} - v^{2} \end{cases}$$

u	v	x	У	Z
2	1	3	4	5
3	1	8	6	10
3	2	5	12	13

Method 2

$$x^{2} + y^{2} = z^{2} \Rightarrow y^{2} = z^{2} - x^{2} \Rightarrow y^{2} = (z + x)(z - x) \Rightarrow \frac{y}{z - x} = \frac{z + x}{y} = u$$

Let
$$y = u(z - x)$$
(1); $z + x = uy$ (2)

Sub (1) into (2)
$$z + x = u^2z - u^2x$$

$$(u^2+1)x = (u^2-1)z$$

Let
$$x = (u^2 - 1)v$$
, $z = (u^2 + 1)v \Rightarrow y = u[(u^2 + 1)v - (u^2 - 1)v] = 2uv$

u	v	x	y	Z
2	1	3	4	5
3	1	8	6	10
4	1	15	8	17
5	1	24	10	26

Note that we cannot find the primitive root (5, 12, 13) unless

$$uv = 6.....(3)$$

$$6u - v = 5 \dots (4)$$

From (4),
$$v = 6u - 5$$

$$u(6u - 5) = 6$$

$$6u^2 - 5u - 6 = 0$$

$$u = \frac{3}{2}$$
 or $u = -\frac{2}{3}$

$$v = 4 \text{ or } -9$$

$$x = 5, y = 12, z = 13$$

which means that u and v may not be an integer.