Fibonacci Sequence and Difference Equations (Recurrence relations)

Created by Mr. Francis Hung on 20081104

1. Fibonacci Sequence

Define the sequence: $F_1 = F_2 = 1$, when $n \ge 1$, $F_{n+2} = F_{n+1} + F_n$

Let $\alpha > \beta$ be the roots of $x^2 - x - 1 = 0$, then $\alpha + \beta = 1$, $\alpha \beta = -1$

$$F_{n+2} = F_{n+1} + F_n \Rightarrow F_{n+2} - (\alpha + \beta)F_{n+1} + \alpha \beta F_n = 0$$

$$\Rightarrow F_{n+2} - \alpha F_{n+1} = \beta(F_{n+1} - \alpha F_n) \dots (*)$$

Let
$$V_n = F_{n+1} - \alpha F_n$$
, for $n = 1, 2, ..., n - 1$

By (*)
$$V_{n+1} = \beta V_n$$

$$n = 1, V_2 = \beta V_1$$

$$n = 2$$
, $V_3 = \beta V_2 = \beta^2 V_1$

.....

$$n \to n-1, V_n = \beta V_{n-1} = \dots = \beta^{n-1} V_1$$

$$F_{n+1} - \alpha F_n = \beta^{n-1} V_1 \dots (1)$$

On the other hand (*) may be rewritten as $F_{n+2} - \beta F_{n+1} = \alpha (F_{n+1} - \beta F_n) \dots (**)$

Let
$$W_n = F_{n+1} - \beta F_n$$
, for $n = 1, 2, ..., n - 1$

By (**)
$$W_{n+1} = \alpha W_n$$

$$n = 1, W_2 = \alpha W_1$$

$$n = 2$$
, $W_3 = \alpha W_2 = \alpha^2 W_1$

.....

$$n \rightarrow n-1$$
, $W_n = \alpha W_{n-1} = \dots = \alpha^{n-1} W_1$

$$F_{n+1} - \beta F_n = \alpha^{n-1} W_1 \dots (2)$$

$$(2)-(1)\;(\alpha-\beta)F_n=\alpha^{n-1}(F_2-\beta F_1)-\beta^{n-1}(F_2-\alpha F_1)$$

$$F_{n} = \frac{\alpha^{n-1}(1-\beta) - \beta^{n-1}(1-\alpha)}{\alpha - \beta}$$

$$= \frac{\alpha^{n-1} - \beta^{n-1} - \alpha\beta(\alpha^{n-2} - \beta^{n-2})}{\alpha - \beta}$$

$$= \frac{\alpha^{n-1} - \beta^{n-1} + (\alpha^{n-2} - \beta^{n-2})}{\alpha - \beta} \quad (\because \alpha \beta = -1)$$

$$= \frac{\alpha^{n-1} + \alpha^{n-2} - (\beta^{n-1} + \beta^{n-2})}{\sqrt{5}} \quad (\because \alpha - \beta = \sqrt{(\alpha - \beta)^{2} - 4\alpha\beta} = \sqrt{5})$$

$$=\frac{\alpha^{n-2}(1+\alpha)-\beta^{n-2}(1+\beta)}{\sqrt{\varepsilon}}$$

$$= \frac{\alpha^{n-2}(\alpha^2) - \beta^{n-2}(\beta^2)}{\sqrt{5}} \quad (\because \alpha > \beta \text{ are roots of } x^2 - x - 1 = 0, \alpha^2 = \alpha + 1, \beta^2 = \beta + 1)$$

$$=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right]$$

Last updated: 2022-09-03

Define
$$R_n = \frac{F_n}{F_{n+1}} = \frac{\frac{1}{\sqrt{5}} (\alpha^n - \beta^n)}{\frac{1}{\sqrt{5}} (\alpha^{n+1} - \beta^{n+1})}$$

$$= \frac{\alpha^n - \beta^n}{\alpha^{n+1} - \beta^{n+1}}$$

$$= \frac{\alpha^n \left[1 - \left(\frac{\beta}{\alpha} \right)^n \right]}{\alpha^{n+1} \left[1 - \left(\frac{\beta}{\alpha} \right)^{n+1} \right]} = \frac{\left[1 - \left(\frac{\beta}{\alpha} \right)^n \right]}{\alpha \left[1 - \left(\frac{\beta}{\alpha} \right)^{n+1} \right]}$$

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{\left[1 - \left(\frac{\beta}{\alpha} \right)^n \right]}{\alpha \left[1 - \left(\frac{\beta}{\alpha} \right)^{n+1} \right]} = \frac{1}{\alpha} \quad (\because -1 < \frac{\beta}{\alpha} < 1, \lim_{n \to \infty} \left(\frac{\beta}{\alpha} \right)^n = 0)$$

$$= \frac{2}{1 + \sqrt{5}} = \frac{\sqrt{5} - 1}{2}$$

The Fibonacci sequence is defined inductively as follows:

$$a_1 = a_2 = 1$$
, $a_n = a_{n-1} + a_{n-2}$ for $n > 2$.

(a) Show that
$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$
, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Hence prove that for all positive integral values of n, $\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A^n \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$.

- (b) Show that A satisfies the matrix equation $A^2 A I = \mathbf{0}$.
- (c) Suppose when x^n is divided by $x^2 x 1$, the remainder is $r_1x + r_2$, where r_1 , r_2 are real numbers,

show that:
$$r_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right], r_2 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right].$$

(d) Show that $A^n = r_1A + r_2I$. (where *I* is the identity matrix.)

Deduce that
$$a_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right].$$

(e) Show that $A^n = \begin{pmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{pmatrix}$ for n > 1 and hence deduce that $a_{n+1}a_{n-1} - a_n^2 = (-1)^n$.

(a)
$$\begin{cases} a_{n+2} = a_{n+1} + a_n \\ a_{n+1} = a_{n+1} \end{cases} \Rightarrow \begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix}$$

To prove
$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A^n \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
, induction on n .

n = 1, done above.

Suppose
$$\begin{pmatrix} a_{k+2} \\ a_{k+1} \end{pmatrix} = A^k \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
.

$$\begin{pmatrix} a_{k+3} \\ a_{k+2} \end{pmatrix} = A \begin{pmatrix} a_{k+2} \\ a_{k+1} \end{pmatrix} = A^{k+1} \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}.$$
By MI, it is true for all positive integer n .

(b)
$$A^2 - A - I = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}$$

(c) Let
$$x^n = (x^2 - x - 1)Q(x) + r_1x + r_2$$

= $(x - \frac{1 + \sqrt{5}}{2})(x - \frac{1 - \sqrt{5}}{2})Q(x) + r_1x + r_2$

Put
$$x = \frac{1+\sqrt{5}}{2} \implies \left(\frac{1+\sqrt{5}}{2}\right)^n = r_1 \frac{1+\sqrt{5}}{2} + r_2 + \cdots$$
 (1)

Put
$$x = \frac{1 - \sqrt{5}}{2}$$
 $\Rightarrow \left(\frac{1 - \sqrt{5}}{2}\right)^n = r_1 \frac{1 - \sqrt{5}}{2} + r_2 \cdot \dots (2)$

$$(1) - (2) \qquad \sqrt{5} \quad r_1 = \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n$$

$$r_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right]$$

$$\frac{(1)}{\left(\frac{1+\sqrt{5}}{2}\right)} - \frac{(2)}{\left(\frac{1-\sqrt{5}}{2}\right)} \qquad r_2 \left(\frac{1}{\frac{1+\sqrt{5}}{2}} - \frac{1}{\frac{1-\sqrt{5}}{2}}\right) = \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}$$

$$\frac{2r_2}{1-5} \left(1-\sqrt{5}-1-\sqrt{5}\right) = \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}$$

$$r_2 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \right]$$

$$A^n = (A^2 - A - DO(A) + r_1A + r_2I = r_1A + r_2I$$

(d)
$$A^{n} = (A^{2} - A - I)Q(A) + r_{1}A + r_{2}I = r_{1}A + r_{2}I$$

 $A^{n} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} = r_{1}A \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} + r_{2} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix}$
 $\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = r_{1} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} + r_{2} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix}$

$$\Rightarrow a_{n+1} = r_1 a_2 + r_2 a_1 = r_1 + r_2$$

$$a_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right]$$

$$a_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} \left(\frac{3+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \left(\frac{3-\sqrt{5}}{2} \right) \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

(e) Induction on
$$n$$
. $n = 2$, $A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a_3 & a_2 \\ a_2 & a_1 \end{pmatrix}$
 $n = 3$, $A^3 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} a_4 & a_3 \\ a_2 & a_2 \end{pmatrix}$

Suppose
$$A^k = \begin{pmatrix} a_{k+1} & a_k \\ a_k & a_{k-1} \end{pmatrix}$$
 and $A^{k+1} = \begin{pmatrix} a_{k+2} & a_{k+1} \\ a_{k+1} & a_k \end{pmatrix}$ for $k > 1$.

By (b),
$$A^2 - A - I = 0$$

$$\therefore A^{k+2} - A^{k+1} - A^k = \mathbf{0} \Rightarrow A^{k+2} = A^{k+1} + A^k = \begin{pmatrix} a_{k+2} & a_{k+1} \\ a_{k+1} & a_k \end{pmatrix} + \begin{pmatrix} a_{k+1} & a_k \\ a_k & a_{k+1} \end{pmatrix} = \begin{pmatrix} a_{k+3} & a_{k+2} \\ a_{k+2} & a_{k+1} \end{pmatrix}$$

By induction, the result is true for all n > 1. $det(A^n) = det(A)^n$

$$\begin{vmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{vmatrix} = (-1)^n$$
$$a_{n+1}a_{n-1} - a_n^2 = (-1)^n$$

In particular, put n = 6, $a_7a_5 - a_6^2 = 13 \times 5 - 8^2 = (-1)^6 = 1$.

We can draw two rectangles whose dimensions are 13×5 and 8×8 respectively so that:

If we dissect the two rectangles into small parts A, B, C, D and P, Q, R, S as shown:

It seems that A = P, B = Q, C = R, D = S and the areas of the two rectangles appeared to be equal. 65 = 64?

Can you see that there is a white gap between the regions A, B C and D?

Exercise

Let $a_1 = 3$, $a_2 = 2$, $a_n = 2a_{n-1} - a_{n-2}$ for n > 2.

Express a_n in terms of n only.

Let
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
. To prove $\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = A^n \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, induction on n .

$$n = 1, \begin{pmatrix} a_3 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2a_2 - a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$

Suppose
$$\begin{pmatrix} a_{k+2} \\ a_{k+1} \end{pmatrix} = A^k \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
.

$$\begin{pmatrix} a_{k+3} \\ a_{k+2} \end{pmatrix} = \begin{pmatrix} 2a_{k+2} - a_{k+1} \\ a_{k+2} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{k+2} \\ a_{k+1} \end{pmatrix} = A \cdot A^k \begin{pmatrix} a_2 \\ a_1 \end{pmatrix} = A^{k+1} \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}.$$

By MI, it is true for all positive integer n.

Next, A satisfies the matrix equation: $A^2 - 2A + I = \mathbf{0}$

L.H.S. =
$$A^2 - 2A + I = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} - 2 \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} - \begin{pmatrix} 4 & -2 \\ 2 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{0}$$

Thirdly, we find the remainder when x^n is divided by $x^2 - 2x + 1$ for n > 2.

Let
$$x^n = (x^2 - 2x + 1)Q(x) + r_1x + r_2$$

Put
$$x = 1$$
: $1 = r_1 + r_2 + \cdots + r_{n-1} + r$

Differentiate w.r.t.
$$x$$
: $nx^{n-1} = (x-1)^2 Q'(x) + 2(x-1)Q(x) + r_1$

Put
$$x = 1$$
: $n = r_1 \cdot \dots \cdot (2)$

Sub. (2) into (1):
$$r_2 = 1 - n$$

$$\therefore$$
 The remainder is $nx + 1 - n$

$$A^{n} = (A^{2} - 2A + I)Q(A) + nA + (1 - n)I$$

$$A^{n} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} = r_{1} A \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix} + r_{2} \begin{pmatrix} a_{2} \\ a_{1} \end{pmatrix}$$

$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = n \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 \\ a_1 \end{pmatrix} + (1-n) \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$

$$a_{n+1} = na_2 + (1-n)a_1$$

$$\Rightarrow a_n = (n-1)\cdot 2 + (1-n+1)\cdot 3 = 4-n$$

Example Given a_1 and a_2 , $a_{n+2} = a_n + a_{n+1}$ for $n \ge 1$.

Prove that $a_1 + a_2 + a_3 + \cdots + a_n = a_{n+2} - a_2$ for $n \ge 1$

Proof: Induction on *n*.

$$n = 1$$
, L.H.S. = $a_1 = (a_1 + a_2) - a_2 = a_3 - a_2 = R$.H.S.

 \therefore It is true for n = 1.

Suppose $a_1 + a_2 + a_3 + \cdots + a_k = a_{k+2} - a_2$ for some $k \ge 1$

$$a_1 + a_2 + a_3 + \cdots + a_k + a_{k+1} = (a_{k+1} + a_{k+2}) - a_2$$
 (by induction assumption)
= $a_{k+3} - a_2$

If it is true for n = k, then it is also true for n = k + 1.

By the principal of mathematical induction,

$$a_1 + a_2 + a_3 + \cdots + a_n = a_{n+2} - a_2$$
 for all integers $n \ge 1$

In particular, evaluate the following expression:

$$4+5+9+14+23+37+60+97+157+254+411+665+1076+1741+2817+4558$$
.

$$a_1 = 4$$
, $a_2 = 5$, $a_3 = 9 = 4 + 5 = a_1 + a_2$, $a_4 = 14 = 5 + 9 = a_2 + a_3$, ..., $a_{n+2} = a_n + a_{n+1}$ for $n \ge 1$ $a_{16} = 4558$

 $a_{17} = 2817 + 4558 = 7375$

 $a_{18} = 4558 + 7375 = 11933$

$$a_1 + a_2 + a_3 + \cdots + a_{16} = a_{18} - a_2 = 11933 - 5 = 11928$$

2. Difference Equation (Recurrence relation)

2.1 Types of difference equations.

The general form of difference equation is $a_{r,n} u_{n+r} + a_{r,n-1} u_{n+r-1} + ... + a_{r,1} u_{r+1} + a_{r,0} u_r = b_r$.

It is called a linear difference equation of order n ($a_{r,n} \neq 0$, $a_{r,0} \neq 0$).

e.g.1 $u_{r+2} - u_{r+1} + u_r = r$ is a linear difference equation of <u>order 2</u>.

Some example of difference equation which is **non-linear**.

e.g.2
$$u_r u_{r-1} - au_r - bu_{r-1} + c = 0$$

If $b_r = 0$, the equation is said to be **homogeneous**.

e.g.3 $u_r - 2r u_{r-1} + k^2 u_{r-2} = 0$. This is a linear homogeneous difference equation of order 2.

(e.g.1 is **non-homogeneous**.)

If $a_{r,n}$, $a_{r,n-1}$, ..., $a_{r,1}$, $a_{r,0}$ are constants and independent of r, the equation is called a linear difference equation with **constant coefficients** of order n.

e.g.4
$$u_r - A u_{r-1} + B = 0$$
.

This is a linear non-homogeneous difference equation with constant coefficients of order 1.

e.g.5
$$u_r = 3 u_{r-1} - 2 u_{r-2}$$

This is a linear homogeneous difference equation with constant coefficients of order 2.

2.2 First order linear homogeneous difference equations.

$$u_{n+1} - a u_n = 0$$

$$u_n = a \ u_{n-1} = a^2 \ u_{n-2} = a^3 \ u_{n-3} = \dots = a^{n-1} \ u_1$$

Let $u_1 = Aa$, where A is a constant and independent of n.

$$\therefore u_n = A a^n$$

2.3 First order linear non-homogeneous difference equation.

$$u_{n+1} - a u_n = b_n$$

 $u_n = a u_{n-1} + b_{n-1}$

$$= a (a u_{n-2} + b_{n-2}) + b_{n-1}$$

=
$$a^{n-1} u_1 + b_{n-1} + a b_{n-2} + \dots + a^{n-2} b_1$$

$$= A a^{n} + b_{n-1} + a b_{n-2} + \dots + a^{n-2} b_{1}$$

In particular, if b_n is independent of n, let $b_n = b$.

$$u_{n} = \begin{cases} Aa^{n} + b \cdot \frac{a^{n-1} - 1}{a - 1} & \text{, if } a \neq 1 \\ A + (n - 1)b & \text{, if } a = 1 \end{cases}$$

$$u_n = \begin{cases} A_1 a^n + B & \text{, if } a \neq 1 \\ A_1 + Bn & \text{, if } a = 1 \end{cases}.$$

2.4 Second order linear homogeneous difference equation $u_{n+2} - a u_{n+1} + b u_n = 0$

Define the **characteristic equation** to be $t^2 - at + b = 0$

Let α , β be the roots of the characteristics equation.

:.
$$u_{n+2} - (\alpha + \beta) u_{n+1} + \alpha \beta u_n = 0$$
(*)

$$(u_{n+2} - \alpha u_{n+1}) + \beta (u_{n+1} - \alpha u_n) = 0$$
....(1)

Let
$$v_n = u_{n+1} - \alpha u_n$$

then $v_{n+1} = u_{n+2} - \alpha u_{n+1}$

∴ (1) becomes $v_{n+1} - \beta v_n = 0$, which is of type in section 2.

By the result in section 2, $v_n = A \beta^n$ (2)

(*) can also be written as
$$(u_{n+2} - \beta u_{n+1}) + \alpha (u_{n+1} - \beta u_n) = 0$$
(3)

Let
$$w_n = u_{n+1} - \beta u_n$$

(3) becomes $w_{n+1} - \alpha w_n = 0$

By the result of section 2, $w_n = B \alpha^n$ (4)

Rewrite (2) and (4):
$$\begin{cases} u_{n+1} - \alpha u_n = A\beta^n \\ u_{n+1} - \beta u_n = B\alpha^n \end{cases}$$

Case 1: $\alpha \neq \beta$, solving (2) and (4), $u_n = A_1 \alpha^n + B_1 \beta^n$ for some constants A_1, B_1 .

Case 2: $\alpha = \beta$, (2) becomes $u_{n+1} - \alpha u_n = A \alpha^n$, which is of type in section (3)

$$u_n = A' \alpha^n + A(\alpha^{n-1} + \alpha \cdot \alpha^{n-2} + \dots + \alpha^{n-2} \cdot \alpha)$$

= $(A_1n + B_1) \alpha^n$ for some constant A_1, B_1 .

2.5 m^{th} order linear homogeneous difference equation with constant coefficients.

$$a_m u_{m+r} + a_{m-1} u_{m+r-1} + \dots + a_1 u_{r+1} + a_0 u_r = 0$$

The characteristic equation is $a_m t^m + a_{m-1} t^{m-1} + ... + a_1 t + a_0 = 0$ (*), where $a_m \neq 0$, $a_0 \neq 0$

Suppose $\alpha_1, \alpha_2, \dots, \alpha_m$ are the roots of (*)

Case 1: All roots are distinct, then $u_n = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_m \alpha_m^n$

Case 2: $\alpha_1, \alpha_2, \ldots, \alpha_k$ are distinct $(k \le m)$

 β_1 of multiplicity $\ell_1 > 1$, β_2 of multiplicity $\ell_2 > 1$,, β_j of multiplicity $\ell_j > 1$

$$k + \ell_1 + \ell_2 + \dots + \ell_j = m$$
, then

$$u_n = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_k \alpha_k^n$$

$$+ \Big(B_{1,\ell_1-1}n^{\ell_1-1} + \dots + B_{1,1}n + B_{1,0}\Big)\beta_1^n + \dots + \Big(B_{j,\ell_j-1}n^{\ell_j-1} + \dots + B_{j,1}n + B_{j,0}\Big)\beta_j^n$$

where all letters except $\alpha_1, \alpha_2, \dots, \alpha_k, \beta_1, \beta_2, \dots, \beta_j$ are constant.

The proof are outside the scope of text.

2.6 The solution for non-homogeneous difference equation are much difficult and so is omitted. We give an example to solve a non-linear one.

Advanced Level Pure Mathematics by S.L. Green p.408 Q16

(Reference: Techniques of Mathematics Analysis by C.J. Tranter p.33 ex.12)

Show that if $u_n u_{n+1} - a u_{n+1} - b u_n + c = 0$, for all positive integral values of n, the constants a, b, c being independent of n, then

$$v_{n+2} + (a-b) v_{n+1} + (c-ab) v_n = 0$$
, where $u_n = \frac{v_{n+1}}{v_n} + a$.

Hence find u_n if a = 4, b = 1, c = 6, $u_1 = 1$. Show that $u_n \to 2$ as $n \to \infty$.

Solution $u_n = \frac{v_{n+1}}{v_n} + a$. The difference equation becomes

$$(\frac{v_{n+1}}{v_n} + a)(\frac{v_{n+2}}{v_{n+1}} + a) - a(\frac{v_{n+2}}{v_{n+1}} + a) - b(\frac{v_{n+1}}{v_n} + a) + c = 0$$

$$\frac{v_{n+2}}{v_n} + a\frac{v_{n+2}}{v_{n+1}} + a\frac{v_{n+1}}{v_n} + a^2 - a\frac{v_{n+2}}{v_{n+1}} - a^2 - b\frac{v_{n+1}}{v_n} - ab + c = 0$$

$$\frac{v_{n+2}}{v_n} + a \frac{v_{n+1}}{v_n} - b \frac{v_{n+1}}{v_n} - ab + c = 0$$

$$v_{n+2} + (a - b) v_{n+1} + (c - ab) v_n = 0$$
 Q.E.D.

$$a = 4$$
, $b = 1$, $c = 6$

$$v_{n+2} + 3 v_{n+1} + 2 v_n = 0$$

Characteristic equation (t + 2)(t + 1) = 0

$$v_n = A(-1)^n + B(-2)^n$$

$$u_n = \frac{A(-1)^{n+1} + B(-2)^{n+1}}{A(-1)^n + B(-2)^n} + 4$$

$$u_n = 3 - \frac{B(-2)^n}{A(-1)^n + B(-2)^n}$$

$$=3-\frac{1}{1+C\cdot 2^{-n}}$$
, where C is a constant.

$$u_1 = 1 \Rightarrow 1 = 3 - \frac{1}{1 + \frac{C}{2}}$$

$$\frac{1}{2} = 1 + \frac{C}{2}$$

$$C = -1$$

$$u_n = 3 - \frac{1}{1 - 2^{-n}} = 2 - \frac{1}{2^n - 1}$$

as
$$n \to \infty$$
, $u_n \to 3 - 1 = 2$

Exercise

- 1. Find the general solution of $U_{n+2} 3U_{n+1} + 2U_n = 0$.
- 2. Find the general solution of $U_{n+3} + 3 U_{n+2} + 3 U_{n+1} + 2 U_n = 0$. (This is a third order difference equation where all the roots of the characteristic equation are different.)
- 3. Find the general solution of $V_{n+1} V_n = 5$.
- 4. Find the general solution of $W_{n+1} 2W_n = 5$.
- 5. Using Q.1, Q.3 and Q.4, solve $U_{n+2} 3 U_{n+1} + 2 U_n = 5$. (This is second order non-homogeneous difference equation.)
- 6. Find the general solution of $4 U_{n+2} + 4 U_{n+1} + U_n = 0$ (In this case, the roots of the characteristic equation are equal.)
- 7. Using the method in Q.5, solve $4 U_{n+2} + 4 U_{n+1} + U_n = -1$. (Can you solve $U_{n+2} + b U_{n+1} + c U_n = a$? Just memorizes the formulae you have derived, you need not to do it all again.)
- 8. Solve $U_{n+2} 7 U_{n+1} + 12 U_n = 2 n$. (This is a second order difference equation, but the coefficients are not similar, use a method similar to Q.5)
- 9. Prove that the general solution of $U_{n+2} + U_{n+1} + U_n = 0$ is $U_n = A \cos 120 n^\circ + B \sin 120 n^\circ$, where A and B may be complex. (In this case, the roots are complex, use De-Movrie's Theorem)
- 10. Solve $U_{n+2} + U_n = n^2 + n$ (This is a second order non-homogeneous difference equation, and the roots of the characteristic equation are complex.)
- 11. Solve $U_{n+3} + U_{n+2} U_{n+1} U_n = 0$ (2 equal roots.)
- 12. Do Q.2 again, with the aids of Q.9. (3 different roots.)
- 13. Solve $U_{n+3} 6 U_{n+2} + 12 U_{n+1} 8 U_n = 0$ (3 equal roots, now can you guess a formula for an nth order linear homogeneous difference equation?)

The above questions have no initial conditions. Now we come with initial conditions and the recurring series. The solutions are called particular solutions.

- 14. Solve $U_{n+3} 3U_{n+2} + 2U_{n+1} = 0$, $U_1 = 3$, $U_2 = 4$. (This is a 'second' order difference equation.)
- 15. Solve $U_{n+2}-4$ $U_{n+1}-5$ $U_n=2n$, $U_1=0$, $U_2=1$. (Complex roots, non-homogeneous.)
- 16. Solve $U_{n+2} U_n = 0$, $U_1 = 1$, $U_2 = 0$.
- 17. Solve $U_{n+2} 6 U_{n+1} + 9 U_n = 1$, $U_1 = 0$, $U_2 = 0$

18. Suppose U_n satisfies the second order recurrence relation and is the coefficient of x_n in the series:

$$1 + 5x + 9x^2 + 13x^3 + \dots$$

- (a) Find the recurrence relation $U_{n+2} + a U_{n+1} + b U_n = 0$.
- (b) Find the particular solution U_n.
- (c) Prove that the series converges to $\frac{A+Bx}{1+ax+bx^2}$.

Find the restriction on x.

- 19. Do Q.18 again with the series: $1 + x + 2x^2 + 3x^3 + ...$
- 20. Advanced Level Pure Mathematics by S.L. Green p.408 Q14(i)

Find the n^{th} term of the recurring series, and the sum to infinity of the series:

$$1 + 5x + 9x^2 + 13x^2 + \dots$$

21. Advanced Level Pure Mathematics by S.L. Green p.408 Q15

The sequence u_1 , u_2 , u_3 , is such that each term after the second is the sum of the two preceding terms. Find u_n , given $u_1 = 1$, $u_2 = -1$.

22. Advanced Level Pure Mathematics by S.L. Green p.408 Q17

In the series
$$u_1 + u_2 + u_3 + \dots + u_n + \dots$$
, $u_n = x u_{n-1} + 2x^2 u_{n-2}$

If $u_1 = 4$, $u_2 = 5x$, find the general term u_n and the sum of the first n terms of the series.

23. Techniques of Mathematics Analysis by C.J. Tranter p.35 Q1

Find the general solution of the difference equation $u_{r+2} + 3 u_{r+1} - 4 u_r = 0$, $r \ge 0$.

Find also the values of the constants in the general solution if $u_0 = 21$ and $u_1 = 1$.

24. Techniques of Mathematics Analysis by C.J. Tranter p.37 Q17

The numbers x_n satisfy the recurrence formula $x_{n+3} = \frac{1}{2}(x_n + x_{n+1} + x_{n+2})$.

Prove that if $y_n = x_n + 2x_{n+1} + 3x_{n+2}$ then $y_{n+1} = y_n = y_1 = 6x$ (say).

Prove also that if $z_n = (x_n - x)^2 + 2(x_n - x)(x_{n+1} - x) + 3(x_{n+1} - x)^2$, then $z_{n+1} = \frac{1}{3}z_n = 3^{-n}z_1$.

25. Algebra by J.W. Archbold p.41 Q11

Show that
$$\sum_{r=0}^{n} r(r+1)\cdots(r-k+1) = \frac{n(n+1)\cdots(n+k)}{k+1}.$$

Deduce that, if $a_{r+1} = \frac{a_r}{1 + ra_r}$, then

$$\sum_{r=0}^{n} \frac{1}{a_r a_{r+2}} = \frac{n+1}{a_0^2} + \frac{n+1}{3a_0} (n^2 + 2n + 3) + \frac{1}{20} (n-1)(n)(n+1)(n+2)(n+3).$$

26. Algebra by J.W. Archbold p.41 Q12

If
$$a_{r+1} = \frac{a_r}{a_r + 1}$$
, then $\sum_{r=1}^n \frac{1}{a_r^2} = \frac{n}{a_0^2} + \frac{n(n+1)}{a_0} + \frac{n(n+1)(2n+1)}{6}$.

27. Algebra by J.W. Archbold p.41 Q13

If
$$f(r) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{r}$$
, where r is a positive integer, prove that

$$\sum_{r=1}^{n} (2r+1)f(r) = (n+1)^{2} f(n) - \frac{1}{2} n(n+1).$$

28. Algebra by J.W. Archbold p.41 Q14.

The Fibonacci sequence u_1, \ldots, u_n, \ldots is defined by $u_1 = 1, u_2 = 2$ and $u_n = u_{n-1} + u_{n-2}$ for n > 2

Prove that (i)
$$u_n = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$$
,

(*ii*)
$$u_1 + \dots + u_n = u_{n+2} - 2$$
,

(*iii*)
$$u_1 + \dots + u_{2n-1} = u_{2n} - 1$$
,

(iv)
$$u_2 + u_4 + \dots + u_{2n} = u_{2n+1} - 1$$
,

(v)
$$u_{2n} = u_n^2 + u_{n-1}^2$$
,

$$(vi)$$
 $u_{2n+1} = u_{n+1}^2 - u_{n-1}^2$.

Supplementary exercises: Techniques of Mathematics Analysis by C.J. Tranter p.37 Q13 – Q18

End of Exercise

Answers

1.
$$U_n = A + B 2^n$$

2.
$$U_n = A(-2)^n + B \frac{(-1 + \sqrt{3}i)^n}{2^n} + C \frac{(-1 - \sqrt{3}i)^n}{2^n}$$

3.
$$V_n = A + 5 n$$

4.
$$W_n = B 2^n - 5$$

5.
$$U_n = A + B 2^n - 5 n$$

6.
$$U_n = \left(-\frac{1}{2}\right)^n (A + Bn)$$

7.
$$U_n = \left(-\frac{1}{2}\right)^n (A + Bn) - \frac{1}{9}$$

General solution of $U_{n+2} + b U_{n+1} + c U_n = a$:

Let r and s be the roots of the characteristic equation.

Case 1
$$r \neq s, r \neq 1, s \neq 1$$

$$U_n = A r^n + B s^n + \frac{a}{1+b+c}$$

Case 2
$$r \neq s, r \neq 1, s = 1$$
 then $r = c$

$$U_n = A + B c^n + \frac{an}{1 - c}$$

Case 3
$$r = s \neq 1$$

$$U_n = r^n(A + B n) + \frac{a}{1 + b + c}$$

Case 4
$$r = s = 1$$

$$U_n = A + B n + \frac{an^2}{2}$$

Note that in all cases, all the solutions have the general solution of the homogeneous equation. So you need to just memories the non-homogeneous part.

8.
$$U_n = A 4^n + B 3^n + \frac{n}{3} + \frac{5}{18}$$

General solution of $U_{n+2} + b U_{n+1} + c U_n = 2 n$.

Let r and s be the roots of the characteristic equation.

Suppose $r \neq s$, $r \neq 1$, $s \neq 1$

$$U_n = A r^n + B s^n + \frac{2n}{1+b+c} - \frac{4+2b}{1+b+c}$$

10.
$$U_n = A \cos 90n^\circ + B \sin 90n^\circ + \frac{n^2 - n - 1}{2}$$

11.
$$U_n = A + (-1)^n (B + Cn)$$

12.
$$U_n = A(-2)^n + B \cos 120n^\circ + C \sin 120n^\circ$$

13.
$$U_n = 2^n(A + B n + C n^2)$$

14. $U_n = 2 + 2^{n-1}$

14.
$$U_n = 2 + 2^{n-1}$$

15. Using the result of Q.8,
$$r = -1$$
, $s = 5$, then $U_n = \frac{(-1)^n}{12} + \frac{13 \times 5^n}{240} - \frac{n}{4} + \frac{1}{16}$

16.
$$U_n = \frac{1}{2} - \frac{(-1)^n}{2}$$

17.
$$U_n = 3^n \left(-\frac{5}{36} + \frac{n}{18} \right) + \frac{1}{4}$$

18. (a)
$$U_{n+2} - 2 U_{n+1} + U_n = 0$$

(b)
$$U_n = -3 + 4n$$

(b)
$$U_n = -3 + 4n$$

(c) $\frac{1+3x}{1-2x+x^2}$; $|x| < 1$

19. (a)
$$U_{n+2} - U_{n+1} - U_n = 0$$

(b)
$$U_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

(c)
$$\frac{1}{1-x-x^2}$$
; $|x| < \frac{\sqrt{5}-1}{2}$

20.
$$(4n-3)x^{n-1}$$
, $\frac{1+3x}{(1-x)^2}$, $-1 \le x \le 1$.

21.
$$\frac{1}{10} \left(5 - 3\sqrt{5}\right) \left(1 + \sqrt{5}\right)^{n-1} \cdot 2^{-n+1} + \frac{1}{10} \left(5 + 3\sqrt{5}\right) \left(1 - \sqrt{5}\right)^{n-1} \cdot 2^{-n+1}$$
.

22.
$$[3 \cdot 2^{n-1} + (-1)^{n-1}]x^{n-1}$$
; $3[1 - (2x)^n](1 - 2x)^{-1} + [1 - (-x)^n](1 + x)^{-1}$.

23.
$$u_r = A + B(-4)^r$$
, $A = 17$, $B = 4$.