Limit of sequence lecture notes
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Edited by Mr. Francis Hung on March 28, 2009 Last updated: 24 March 2023

1.  Definition of limit of sequence.
Consider the sequence: {x, };Ozl .

lim x,, exists and equal to € if the following condition is satistfied:
n—o0

Ve>0,9N e Nsuchthat Vn>N, |x,— ¢ <e.

Otherwise, we say that lim x, does not exist; or the sequence diverges or not convergent.
n—>0

Example 1.1

Consider the sequence: {l} .
n

n=l1

Ve>0, letN={l}+l € N,thenN>l:>%<8

€ €
1 1
such that V.n >N, |x, — 0| =|-|=—<—<e.
n n
liml=0
n%mn

Example 1.2

Consider the sequence: {n — 1}

n n=1

Ve>0, letN={l}+l € N,thenN>l:>%<8
€

such that ¥ n> N, oo — 1] =|" 1

im2=l oy
n—>o0 n

Example 1.3

Consider the sequence: {2%} .

n=1

1

logl log L
Ve>0,let N=| —2% |4 1e N, then N> ga:>N10g2>10gl:>21">l:>LN<z~:
log2 log2 ¢ €
1 1 |
such that V n >N, [x, — 0| =|— - 0|=—<—<E.
2" 2" 2
n—w Q"
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1. Definition of limit of sequence

Example 1.4

Consider the sequence: {OL” }::1 , where 0 < a..
Claim: Bernoulli inequality If x > —1, then (1 +x)" > 1 +nx, Vn € N
Proof: Induction on n. n =1, (1 + x)! = 1 + x, the result is obvious.
Suppose (1 +x)*> 1+ kx
Multiply both sides by (1 + x), which is non-negative.
(1 +x)"'> 1+ nx)(1 +x)
(I+x)y"'>21+m+Ix+n®>>21+m+ Dx

By Ml, ifx>-1,then (1 +x)">1+nx, Vn e N

Ifao=0, lima"=0;ifoa=1, lima"=1

n—>0 n—»o0

Ifa>1,letaa=1+x; wherex>0

By Bernoulli inequality, (1 +x)">1+nx = (1 +x)" > nx ------ (1)

Claim lim o does not exist for o > 1.
n—>0

Proof: Suppose on the contrary, lim o exists and equal to .

n—>»o0

Clearly a” >0 and £€> 0

Ve>0,3N e Nsuchthat Va>N, |o"—( <g
—e<a'—€<cg

—etl<a"<eg+l

nx<(l+x)'<eg+d¢

n£8+f

X
2/

Lete =€ n<— V¥V n> N, which means that » is bounded above by %

X X
That is a contradiction.

lim o” does not exist for o > 1.

n—0

Ifo<a<l,leta= ;: where x >0

I+ x
By Bernoulli inequality, (1 +x)" > 1 + nx = SL ------ ()
(1+x)" nx
Ve>0, letNZ[L}r 1 eN, thenNZL:Ls €
X€ xe  Nx
1 1 1
Vn>N,n>— |o"-0|=0a"= <—<g
Xe (I+x)  nx
lima"=0
n—>0
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1. Definition of limit of sequence

Example 1.5

Prove that if @ > 1, then lim4/a = 1.

n—>0

Let K/Z=l+0cn, o, >0
By Bernoulli inequality, a = (1 + a.,)" > 1 + now,

ocnﬁa_l
n
. a—1 a—1 a—1
Hence, for any given € > 0, let NZ[—} +1=> N> =>e>
£ £
Vn>N,|</Z—1|=|1+an—1|=|an|=ansa‘1<“7‘1<e
Thus, by definition, lim4/a = 1.
Example 1.6
Prove that if 0 <o < 1, then limna"=0.
1 1
—>1;Let —=1+h, where 1> 0.
a a
Lﬂz(1+h)"=1+nh+@h2+--->”(”7‘l)h2 forn>2
a
o' <—F——=>na" <——
n(n—1)h’ (n—1)n?
. 2 2
Forany givene>0,letN=|— [+2=>N-1>—F=e>— <>
&h eh (N =1)h

2 2
<

V n>N, "—0]=na"
N A T

<eg

Thus, by definition, limra"=0.

n—>x0

Edited by Mr. Francis Hung
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2. Divergent sequence

2. Divergent sequences
(i)  The sequence a, = 3*""! diverges to positive infinity.
(i1)) The sequence b, = 1 — 2n diverges to negative infinity.
(ii1)) The sequence ¢, = (—1)" oscillates (between 1 and —1).

(iv) The sequence d, = (—1)"-n oscillates divergent (to £o0).

Definition 2.1: The sequence {a,} is said to tend to infinity (+o0) if given any real number M (however

large), there exists N € N such that a, > M for all n > N.

We write  lima, = .

n—>0

Similarly, we write lima, = —co if given any real number M (however small), there exists N € N

n—>0

such that a, <M for all n > N.

It should be emphasized that co and —oo are not positive numbers and the sequences are not convergent.
Thus,

() lim3"" =

n—>0

(i) lim(l-2n)=—o.
Example 2.1

Prove by definition that (a) 1im3*' =co;  (b) lim(l—-2n)=—o.

n—»0 n—>0

loglM
(@ VMR, letN=|~ ﬂﬂ +1, then 32¥1 > A

2\ log3

vn>N’32nfl>32Nfl>M

lim3*"™" = o0

n—>0

(b) VMEeR, letNZ‘[l_zM} +1,then 1 -2N<M

Vn>N,1-2n<1-2N<M
lim(1 —2n) = o0

n—0
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2. Divergent sequence

Example 2.2

1 1 1
Leta,=| —=+——=—=++-+—=|. (sum of n + 1 terms) Prove that lima,6 =o0.
(& Jiel rznj ( : o

Observe that the smallest term is

1
NTh

YV M eR,let N=[2M?] + 1, then N > 2M? :\/gww

V n>N, L+;+...+ ! > ! +- 4 ! :n+l> k :\/Z>\/E>M
" n An+ V2n " A2n an Nan T Aan V27N 2

n+1 terms

. an >M:> llman = o0

n—»0

Definition 2.2
If a, does not tend to a limit or to o or to —oo, we say that a, oscillates (or is an oscillating sequence).
If a, oscillates and is bounded, it oscillates finitely. If @, oscillates and is not bounded, it oscillates

infinitely.
Example 2.3
1.  c¢n=(-1)" oscillates finitely (between 1 and —1).

2. dn=(-1)"n oscillates infinitely.

(1)’

n

3. The sequence a, = is not an oscillating sequence. It has a limit = 0.
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3. Uniqueness of limit

Theorem 3.1 A sequence can converge to only one limit, i.e. if a limit exists, it is unique.

Proof: Let {x,|"

n=1

be the given sequence. Try show that if lim x,=a and lim x,= b, then a = b.

n—>0 n—>0

By hypothesis, given any € > 0, we can find N1 and N> € N such that
X, — qa| <§ whenever n > N

£
and |x, — b <E whenever n > N>

then, whenever n > N = max{N1, N>}, we have

la—b|=|a—xn+ x,— b| < |a—xn| + |x. — b| (by triangle inequality)

E &€
=pn—altxn—b|<=—+t==¢
2 2

1.e. |a — b| is less than any positive € (however small) and so must be zero. Thus a = b.

Example 3.1 If a, =sinl , then |a,| = < 1, therefore, a, 1s a bounded sequence.
n

1
sin —
n

Theorem 3.2  If lim x,=¢, then the sequence is bounded.

n—>0

Proof: Ve>0,3N e Nsuchthat V>N, |x,— | <eg.
Let8:1,||Xn|_|e||<|Xn_e|<l
—1 <o - g <1

ol <1+ Vn>N

Let M = Max{|xi|, 2|, ---, |xnf, 1 +1€}

{x, 17, is bounded above by M.

We remark that

(1) In other words, if {a,} is bounded, {a,} is not convergent. For example, the sequence {a.}

1 1 1
defined by a, =| ——=+ 4+t is not convergent. Since
Y (\/; Jn+l1 \2n j s
1 1 1 n \/Z [N

h=—F7—=+—++—>—==,|—>,[— >M (however large)

Jno An+l N2n  A2n 2 2
this mean {a,} is not bound, therefore {a,} is not convergent.

(2) The converse of the theorem is not true in general. For example, the sequence {a,} defined by

an=(-1)", then -1 < a, < 1, that is, {a,} is bounded, but {a,} is not convergent.

It is an oscillating sequence.

C:\Users\85290\Dropbox\Data\MathsData\Pure Maths\Sequence&Series\notes\limit of sequence note.docx Page 6



Limit of sequence notes Edited by Mr. Francis Hung
4.  Theorems on limits

Theorem 4.1 If lima,=¢ and limb, =&, then (1) lim(a, +b,)=b +&;(2) lim(a,—b,)=b—b.

Proof: By hypothesis, for any given € > 0, we can find N1 and N> such that

lan — €] <%8 for all n > Ny, and

|bn — ] <%8 for all n > N>

then, for any given € > 0, we can find N = max{Ni, N2} such that
[(an + ba) = (&1 + &)| = |(an — &) + (bn - &)
<lan—b|+ |b,—b&| Dby triangle inequality

<lg+lg= cforalln>N
2 2

By definition, we have lim(a, +5,)=0 +6 .

Also, (an —by) — (61 — &)| = |(an — &) + (&2 — bn)|
<lan—b| + |l — b, by triangle inequality
= |an - ell + |bn - eZl

<lg+lg= cforalln>N
2 2

By definition, we have lim(a,—b,)=0 .

Theorem 4.2 If lima,=¢ and limb, =6 , then lim(a,b,)=lima,-limb,= it

n—>0 n—>0 n—»0 n—>0 n—>0

Proof: Since lima,= ¢y, it is bounded by P, i.e. |a,| < P for all n eN for some positive constant P.

By hypothesis, for any given € > 0, we can find N1 and N», such that

lan — €| < for all n > Ni, and

__ &

2(Je,|+1)

by — b <—— forall n> N
2P

Now, for any given € > 0, we can find N = max{Ni, N>} such that
lanbyn — 6| = |an(bn — &) + &(an — €1))
<lan|||bn — &| + |l2]|an — €] by triangle inequality
< Plbun = &f + (|6 Dlan - &

€ €
<P§+(|£2|+I)W

<lg+lg= cforalln>N
2 2

Therefore, by definition, we have lim(a,b,)=lima,-limb,= i, .

n—0 n—»0 n—»0

Lemma If limb =& # 0, then there exists a natural number N such that |b,| >%|€ 2| foralln>N.

Proof: By hypothesis we can find N such that |5, — &| <%|€2| foralln >N
62 = €2 — b + ba| < |& = ba| + [Di]
= |bn— | + byl <%|€2|+ |by| for all n> N .

Which gives |b,| >%|€2| for all n > N.
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4. Theorems on limits

Theorem 4.3 If limb = ¢ # 0, then limi =—=—
n—»o n—»o bn Iim bn £2

Proof: By hypothesis, for any € > 0, we can find N; such that |5, — & <%€§8 foralln> N .

Also, by the above lemma, we can find N> such that |b,| >%|€ 2| foralln> N, .

Thus, for any given ¢ > 0, we can find N = max{Ni, N>} such that

|
—0e
l,—b 2
bi_%=|b2 / 21 =gforalln>N
n 2 n 2 |f2| . 5 |€2|
.. .1 1 1
Therefore, by definition, lim—=——=—.
n—® limb, ¢,
a lim a, Y
Corollary IfIf lima,=¢;and limb,=& #0, then lim—+ =222 —=—1
n—o n—o n—® bn lim b” gz

n—0

n—»0 b n—>0 n—>0 n—o0 b
n

n

Proof: By theorems 4.2 and 4.3, we have lim 2= = lim(a, )(bi] =(lim a, )(th) =/, % =
2

Examples and exercises 4
Example 4.1 Evaluate each of the following, using the theorems on limits:

5 .5
. 3’51 . 3_; 3_;1151;; 3-0 3
(@ lim—; =lim > 6 > - ==
e Sp° +2n—6 'Hw5+7_72 5+ lim = — lim — 5+40-0 5
n n }’l—)wn n—)wn

(b) 1im[”("+2)— " }=nm{”(”+2)(”2“)”3(”“)]:}11%{%]

el p4l pt 41| e (n+1)(n2+1) ”+1)(”2+1)
1+1+% 1+1iml+1im%
n (1+](1+2] (1+11m}(1+11m2j
n n n—wo p n—wopn
3! .3
(=3 |2, ATm o 2 e
(¢) lim =lim = 71513 T
e \3n+T) el g 3+ 1lim— 3/ 8l
n }1*)00}’[
2 4 .2 .. 4
2n5_4n2 2 s }111%1’10’1072—}!1%1'275 0
(d)  lim——————=lim n1 n10= nl n10 B
-2 3" +n° —10 "”w3+7_77 3+lim—-lim— 3
n n n-)oon n—)wn
1 .
(e) 1m1+2'10n=limW+2=}lg{llO”Jrzzg
n—»54+3.10" ”_mi_k?, lim +3 3
10" n> 10"
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4. Theorems on limits
3n’ +4

Example 4.2 Find limz—ln , using theorems on limits.
n—>0 n —
4
. 3n'+4n 3* n
lim———=Ilimn-
n—o 2pn—1 n—»0 7_ l
n
3+ 4 3
* limn=oand lim—2==
n—»o0 n—o0 1
jp———
n
. 3n’ +4n
lIim———=o0
noe 2p—1

m m—1
Example 4.3  Find lim dn_tan toota

o m m—1
noo pn™ +bn™" +---+b,
integer, Also bo # 0.
a
m m—1 a +71+" +
1 amn” +an” +---+a, — lim ° n" _dy
o m m—1 .
n—> bon +b1n +-- +b n— bo 71_‘_._ +bm 0
n n"

n n

Example 4.4 Ifa>b>c>0,prove that lim b cn =0.

n—>0 an —C
bn —Cn li a a 0-0 0.

Example 4.5  Find the limit: limn (\/n2 +1- n) .

n—0

2 2 2
limn(\/n2+l—n)=limn(\/n2+1—n)-—vn+1+n=limn-n o
o nee Nt +l+en \/n2+1+n ’H“’\/n2+1+n

. 1 1
=lim—-=—
n—0o0 1 2
I+— +1
n

Example 4.6 Eavluate each of the following limits.

(a) limim (where m is a positive integer.)
n—»0 n
3n° +n’ —n
b) lim——
®) o 5p —1
k" +(k+1)" . .
(©) (where £ is a positive number.)

1m n+l
o k4 (k+1)

(d) tim(Vn+T=n).

n—>0

(e) lim(i/m—3 n)

n—»0

Ans. (@) 0; (b) g; © i @ 0 ( o
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4.  Theorems on limits

5.  Squeezing principle (p.42)
51 Find lim—.

n—wo )

2"=(1+1)"=1+n+n(n2_1) o >n(n2—1) forn=2

forn>2

0<—<L forn>2

2" (n-1)

lim 0 < lim - < lim -2 = 0
n—0 n—»0 2" n—>00 (n — 1)

By squeezing principle, lim in: 0
n—>0

;100
4.2 Find lim .

n>x1.01"

n(n—1)---(n—100)

1.01"=(1+0.01’=1+0.0ln+---+ o 0.01'0+ ...
o ln=1)-(n=100) 61101 o0 5 101,
101!
|
0< ! < 101 o forn > 101.
1.01"  n(n—1)---(n-100)-0.01
100 100
n n
0< <101 — forn>101.
1.01" n(n—1)---(n-100)-0.01
100 1
lim 0 < lim - <101-lim 7 5 100 =0
e el ’”%(1—)(1—)-(1—j-o.ml‘”
n n n
100
By squeezing principle, lim =
n>=1,01"

|
43 Find lim-2=.

n—>0 nn

) on 1
ImO0<lim—<Ilim—=0
n—»m n—swop"  noop

!
By squeezing principle, lim Ln =
n—>0 n

C:\Users\85290\Dropbox\Data\MathsData\Pure_Maths\Sequence&Series\notes\limit_of sequence_note.docx Page 10



Limit of sequence notes
4.  Theorems on limits
n

4.4 Prove that lim % =0 for any real number a .

n—w pn!

(@) Fora=0, lim 0 0 is obviously true.
n—o p!
(b) For a> 0, there exists k£ €N such that a < £, it follows that
a a a
> > >
k k+1 k+2

When n > k, we have
L4 _(aa aYf.a a a
n! 1 2 kNk+1 k+2 n

_a(a Y _adt (k1) a Y
K\ k+1 k! a k+1

> ...

Because £ is a constant, so as

k
(k+l) .ASO<L<1,sothat,
k! k+1

k n k n
lim(k+1) ( a Jz(k+l) -lim[ij ~0
no k! k+1 k' oo\ k+1

n

and hence, by squeezing principle, lim 4 .

n—w pn!

n

(c) Fora<0,let b=—a (where b>0), by the above result, lim L 0.

n—o pl
b" a" b"
R S G
n n n
b a" b
0=—-lim—<lim—<lim—=0
n—wo p!  nowo pl oo pl

n

By squeezing principle, lim 4 .
n—wo pl

n

We conclude that for all real number ¢, lim 2 - 0.

n—w pn!
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4. Theorems on limits

45 (a)

(b)

(c)

(d)

(2)

(b)

Evaluate the limits:

By Mr. Francis Hung

1
@) lim2';
n—x0
(i) limn-.
n—0
Let 0 < r < n, prove that C"¢""*) > """ for t > 1, where C" are binomial
coefficients.

Hence, or otherwise, prove by induction that (t” + 1)7 ( "y 1) " fort>1.

Letx,y >0, ax =(x” +y" )7 , prove that

(1)  {an} is strictly decreasing;

(i) lima, = max{x, y}, by using squeezing principle.
Suppose x, > 0 is a monotonic increasing sequence tends to a.

1
Prove that lim(xl" +X5 + ) ) =aq.

(i) Clearly 2* > 1, otherwise 2%s1:>2=(2iys1”=1:>2s1 "
Let 27= 1+ hn, where h, > 0
2=(2Y =1+ ha)' =1+ nhy + > nhy

0<hy<2
n

lim 0 <lim, <1im 2= 0

n—0 n—>0 n—wo pn

By squeezing principle, hmh 0 = lim2" = hm(l +h)=1

(i) Clearly ne o> 1, otherwise n<l=n =(nﬁy£ I"=1=n<11N

Let limn" = 1+ ky, where k» > 0

n—»0

n—(n )' =+ k)" =1+nk, + (nz_l)k:Jr...>@kn2 forn>2

Vi1
. . . 2
lim 0 <limk, <lim | =0
n—oo n—»0 n>o\np—1

By squeezing principle, hmk 0 =limn" —hm(1+k ) 1

Cn+1 n(r+1) _ (7’1 + l)l’l(l’l - 1) . (I’l —-r+ 1) n(r+1) . Cnt(nﬂ)r _ n(n — 1) . (l’l —r+ l)t(””)’
o (r+1) T 7l

Cn+1 n(r+1) B (n+1)tn(r+l) _ (n+1)

r+l

Cn (n+1)r - (l"+1) (n+1)r (7"+1)
Cn+1 n(r+1) > C t(””l) for t> 1 and 0 <r<n.

r+l

(t+12=2+2+1>2+ 1=+ 1> +1)  Itis true forn = 1.

t"">1fort>1and 0<r<n.

n+l n+l

(ZJ’I + 1)n+1 ZZC}TLHI _1+zcn+l m _1+zcn+l nr+l)>ic;1t(n+l)r — (tn+1 + l)n

r+l
r=0

(1) > (" +1)" forex1
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4.  Theorems on limits

1

(¢c) (1) Lett =§; an =(x” +y”)i—yﬁiJ +1] =y(t” + 1)i

o A
a, y(t" + 1); (t” + 1)7
an+1 < an ={an} 1is strictly decreasing

1 L

(1) WL.OG.letx<y,y =(0+ V" )%S(x" +y" ) S(y” + " ) =2"y
lim2' y)=y by @)

By squeezing principle, llglo (x" +y" )% =y
Similarly ify <x, lim (x"+ " =x
lima, = max{x,n;}w
(d) xa Z(x:)%s(xl" + x5 +---+x,'f)%ﬁ(x,'l’ +x) +---+x,'1’)% = n’l’x
a=limx, <lim (x{ +xJ +---+x" )%Slijg n%xn —1(@)=a by (a)ii)

n—>0 n—>0

n
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5. Monotonic convergent theorem

Example 5.1 (Example of monotonic convergent theorem)

Find the limit of the sequence

\/E, \/2+\/5, \[2+1/2+\/§ , oo

Can you prove that the limit exists?

Solution:

Let x; =ﬁ,xz=\/2+\/§, ,xn=\/2+\/2+\/2+\/...\/5 (there are n \/_’s and n 2’s inside.)
Thenxz =2+ x, ,x3=4/24+x, , -+, Xn=4/2+x,_, .

First, we try to prove that {x,} is a monotonic increasing sequence.

SRR S, X v gﬁ

(mj (*/_)2 2+\/_ 2 \/5

- = >0

\/2+\/_+\/_ \/2+\/_+\/_ \/2+\/_+\/_

SoX2 > X1
Suppose xx = xx-1.

X =X, =2+ %, =42+, =(\/2+xk —\2+x,, )

V24 x +42+x,
J2+x, +42+ %,

> 0 by induction assumption

24x,-2-x, X, — X,

\/2+xk +\/2+x,€_1 \/2+xk +\/2+x,{_1
X1 > xp for k> 1
By the principal of mathematical induction, {x,} is a monotonic increasing sequence.

. {xx} 1s a monotonic increasing sequence.

Claim: x, < 2 for all integer n.
Proof: By mathematical induction.
n=1,x= \5 <2

It is true for n = 1.

Suppose x; < 2 for k> 1

V2+x, +2
Then xp1 —2=\/2+x, —2)—rn—
o ( ‘ )w/2+xk+2

N2+x, +2
S Xk < 2

So the statement is also true forn =k + 1
By the principle of mathematical induction, x, < 2 for all integer n.

Since {x,} is an monotonic increasing sequence and is bounded above by 2, by the monotonic

convergent theorem, limx, exists.

n—>»0
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Limit of sequence notes
5. Monotonic convergent theorem
Let limx, =x.

n—»00

Then x> =2 +42++2++---

Xr=2+x
X—-x-2=0
x-2)x+1)=0
x=2orx=-1

Asx =242 v >0

So x =-1 is rejected
Therefore, x = 2 only.
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Limit of sequence notes By Mr. Francis Hung
6.  An important limit: the number e
6 An important limit: the number e

Theorem 6.1 The sequence {a,} where a, = (1 +— ! J 1s monotonic increasing and bounded above by
n

3, and hence is convergent.
Proof: By the binomial theorem, for any positive integer 7,

(Aol o5

=1+§ n(n—1)- r!(n—r+1)_(lj"

n

YA

I3 I_EH

LN

X
~ =
- o

S

n _1 — k
<l+) |—- l———
,Z::‘ r! g n+1ﬂ
n+l[ r—l1
<1+> L 1—ij
[ et n+1

.. The sequence is monotonic increasing.

Next, (H j _”;L H(l_%ﬂ

<1+Z —1+— l+l+---+l

! 3! n!
<1+1+L+L+...+;
2 23 (n—1)-n
=1+1+ 1—l + 1.1 o4 SN
2 2 3 n-1 n
=1+1+1—l
n
<3

This shows that {a,} is bounded above by 3. By monotonic convergent theorem, {a,} converges.

n—>0

Let n — oo, then (1+ j _1+Z[ H(1__H_>1+z_

rlrkO rlr

The limit of this sequence is denoted by e, i.e. e= lim(l +lj .
n

this suggests e = lim 1+l —1+1+ ! +et— ! +---=2.71828...
n—o\  n 2! k!
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Limit of sequence notes
6.  An important limit: the number e
Corollary 6.2: For any rational number p,

(a) lim(l+ljpn =e?

n—»o n

(b) lim(1+£j —e?
n—»o n

Proof:

(a) p=0, the result is obvious.
p € N. Induction on p.
p = 1, the result is obvious.

kn
Suppose lim(1+lj =e* for some ke N.

n—»o n

(k+1)n kn n kn n
lim(l +lj - lim(l +lj (1 +1J - lim(l +lj lim(l +lj —ef o=t
n—o0 n n—o0 n n n—o0 n n—o0 n

pn
By M1, lim(1+1J =e? VpeN.

n—o n

Ifp<Oand—p e N,letg=-p>0

pn —qn
lim(l+lj = lim(l+lj =;:L:e”
n—o0 n n—oo n ] 1 qn el
hm(l + )
n—o n

T
Claim: If 1 <x<y,then 1<x? <y’.

pr=l, where g e N.
q

1 1
Proof: By contradiction, if y? > x*

()

vy 2> x, which is a contradiction.

1 . . .
. (1 +— 1S monotonic 1ncreasmg.

", (Hl
n

n n+l
S(HLJ
n+l

n+l

1+Lj ! (by the result of (*))
n+l

is monotonic increasing.

Moreover, (l+lj <3

n

n

1
(1 +qu <37 (by the result of (*))
n

C:\Users\85290\Dropbox\Data\MathsData\Pure Maths\Sequence&Series\notes\limit of sequence note.docx

By Mr. Francis Hung

Page 17



By Mr. Francis Hung

Limit of sequence notes
6.  An important limit: the number e
7 '
(1 +1J is bounded above by 37.
n

. (1Y . .
By monotonic convergent theorem, hm(l +—j exists. Let hm(l +—j =L.
n—»o0o n

n—>o n

i [
lim| | 1+— =e=/1
n—»o n

n

1)¢
sl= lim(l +—j
n—»o n

Whenpzﬂ,whereq;to, m,q €N.and (m, g) =1
q

n—0 n

Whean—ﬂ,whereq;tO, m,q €N.and (m, g) =1
q

. ny” . 1Y ¢
lim| 1+— =lim| 1+— = =
n—>00 n n—»w n {( 1 jfﬁ} el

The theorem is proved.

n—o n
p =0, the result is obvious.
p €N, Induction on p.

(b) To prove lim(1+£j =e?

n—»0 n

p=1, lim(1+1j =e¢';itis true for p = 1.

Suppose lim(l +EJ =e keN

n—0 n

lim(l + ﬂ} = lim(l + l} (1 + LJ
" n oo\ R n+1l

- Itis also true forp =k + 1

By the principal of mathematical induction, lim

n—0

(1+£J =e” forp eN
n
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Limit of sequence notes
6.  An important limit: the number e

n—>0

p<0,letg=—p>0, 1im[1+£) =1im[1—1
n

=————,validforn>gq

1
p=—,where g eN. Let m = ngq.
q

lim (1 +£) = lim (1 +Lj = lim [1 +iJ "ot et (by the result of (a))

n—»o n n—»o nq m—»>o0 m

When p =ﬂ, where g # 0, meZ, q eN. and (m, g) =1
q

n n K
lim[1+£j = lim(1+ﬂj = lim(l+%jq,where k=ngeN.

n—o0 n n—o nq k—w

1

1
k g
={1}im (1 +%) } = (em ); =e” (by the above result and the result of (a))
—®

The theorem is proved.
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6.  An important limit: the number e

Example 6.1 Advanced Level Pure Mathematics Calculus and Analytical Geometry I

by K.S. Ng, Y. K.kwok, p.90 Exercise 2D Q2(b)

. ' 1 n 1 1 1
) gg[l—?)—j - n a1 ol 1
” hm(MJ lim{ 14| ° R fim( 14— | * tim{14— ]’
n—o\ 3n —1 N0 3n—1 n—>0 3n—1 n—0 3n—1

= ! —~ cm=3n-1

lim(1+ j3 1
m—>00

l m 1 m+1
Remark (1 + —j S(l + j
m m+1

=e
m+1

(1+lj3s(l+ ! j 3
m m+1

.. It is a monotonic increasing sequence.

W= § ‘b—i

®, |,_.

Moreover, (1 + ij <3
m

n 1 1
" (1 + ij } < 33 = the sequence is bounded above by 33.
m

By monotonic convergent theorem, lim (1 + lj - [/

m—>om0 m
m_3 m
m m no
1im(1+l)3 :£3:>e=1im(1+lj =0’= 1im(1+ij3=e3
m—>00 m m—>om m m—»0 m
) 2n-7 3
2-n 2-n n-2 +
(i) lim(l— 4 j = lim 2”_7j (2” j —hm(1+ j 22
n— n-— n—o\ 2n—3 n—o\ 2n — n—>0 n—"7
2n-7 E
=lim| 1+ 4 ? lim| 1+ 4 2=11m 1+— 2-1;m=2n—7
17— 2n— n—>0 n-—"7 m—>90 m

1+i 1+ ! 1+ ! 1+ ! ’
m m+1 m+2 m+3
1 1

(111) lim(l + 2_ %) = lim{(l + ij(l - gﬂ = lim(l + ij lim(l — gj =ete?=¢
n—»0 n n n—0 n n n—»o0 n n—»o0 n

(iv) lim(l _ i—izj — lim (1 —ij(l + i] - lim(l _ ij lim(l ; ij TS B S
n—oo 4n  8n n—>00 4n 2n n—>00 4n ) now 2n
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6.  An important limit: the number e

Example 6.2
n?+1 n n
()T Lyt LY 1)
lim > = lim 1+—2 = lim 1+—2 lim 1+—2 =e
Nn—>0' n n—»o0 n n—»0 n n—»0 n
Example 6.3

k n—k
Let A be fixed real number and £ is a positive integer, find lim n(n — 1)' : (n ket 1)[&j [l —&j .

n—o k! n n

lim n(n—1)...(n—k+1)(&j"(l_&jnk=1iml. n(n—l)--~(n—k+l)./1k(l_

n—o k! n n

_ _ _ -2
thiﬁn 1 n 2 ..... n k+l ﬂlk e_
ns>o k! noon n n 1
:hmi 1 (1_1)[1_2)...(1_1{ 1) LR
n—o n n n

_1 pr:

Remark: lim[l+£] =e¢* VielR.

n—o n

Proof: V1R, we can find a sequence of rational numbers {g.} so that lim g, =X.
m-—>0

n lim g, ] ]
lim lim 1+q—’”] = lim % =em"" =¢* (We have assumed that /' (x) = ¢" is continuous.)

m—»o neoo( n m—»o

Example 6.4
(a) Prove the following inequalities:

i n <(”T+lj forn> 1

.. ny ny
1 —| <nl<e —
) (ej [2j
where e is the limit of the sequence {[1 +lj } .
n

!
(b)  Using (a)(ii) to prove that lim—— =0
n—»0 n

(a) (1) By the inequality of the means, we have

JTZ<%@+0
2~(n—1)<%[2+(n—1)]=

(n+l)

%@+n

>
3-(n—2)<%[3+(n—2)]=

n-1 <%(n+1)

Multiplying, n! <[";1] .
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6.  An important limit: the number e

(i) By (). n! <("2+1]" (5][11] < (5]

As {(Hl] } is an increasing sequence with e as its limit, so that

n

(1+1] <e forn=1,2, -

n
2 3 n
(1+lj<e, (1+l] <e, [1+l] <e, (1+1] <e
1 2 3 n
o 1y, 1. 1Y 1y,
Multiplying [1+= | 1+=| [14+=]| | 1+—| <e
1 2 3 n
FIEET A5 =
f— f— —_ cee <e
1A2)\3 n

(ﬁj < (n+1)” <nl< e(ﬁj
e en 2

() By @)ii), —-n" <ni< e’
e

n

<e

1 n! e

n n

e n 2"

1
Asn—>w, ——>0, £50
e" 2"

n!

By squeezing principle, lim —=0.
n—o n

Example 6.5

1 . - . .
Prove that x, =(1 + —j is monotonic increasing and bounded above. While the sequence
n

n+l
Vn :(1 + —j 1s monotonic decreasing and bounded below.
n

Hence show that they have the same limit: limx, =limy, =e.

n—>0 n—>0

[Hint: Consider n_ and use Bernoulli inequality: (1 +x)" > 1 + nx for x > —1.]

yn+1
1 n+l
i (n+2)] 1 1 1
ARSIk VAR s [1+ J: 1-—— [1+—j
X, (Hlj (n+1) n+1 (n+1) n+1
n
n 1 P +n+l|(n+2) n’+3n°+3n+2
>l —|= i = >1
(n+1) n+l) | (n+17 \n+1) n*+3n”+3n+1
. Xn+l>x;1

The fact that x, is bounded above by 3 has already been proved.
. limx, exists.

n—0
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6.  An important limit: the number e

n+1

-l

n+2
yn+1 (1_"_ 1 j
n+l
_{n2+3n+1_

ey

.. ¥n > Yn+1, SO 1t 1S monotonic decreasing.
Clearly y» is bounded below by 0
. limy, exists.

n—>0

{“ n(n1+z)}ml(: " ;J

_ n+l n+4n* +4n+1
n+2 n' +4n® +4n

Let limx,=p, limy =gq

By Mr. Francis Hung

>1

n+l n
q =1im(1 +lj = lim(l +lj -lim(1+1J =limx -1=limx, =p
n—0 n n—0 n n—»0 n n—0 n—»0
Example 6.6
1 n 1 n+l
(a) Letanz(l‘l‘_J ,bn=(1+_j ,n=1,2,"'
n n
Without reference to binomial theorem, show that {a.} is monotonic increasing and {b,} is
monotonic decreasing.
Hence, determine which is larger number (1000000)!°%°% or (1000001)%7%%%°,
(b) From the results of () show that (ﬁj <nl< e(n + liﬁj .
e e
For n > 6, derive the sharper inequality n!< n(ﬁj .
e
1 X
(a) Lety =(1+—j .
X

Iny=x ln(l+lj
X

y'= l+l In 1+l TR
X x) 1+1

Letz=ln(1+lj—L
x) 1+x
Z,:L.(_L} !
I+ 0 %) (1+x)
_ 1 N 1 =—1—x+x:_ 1 <0
x(1+x) (l+x)2 x(l+x)2 x(l+x)2

.. z is strictly decreasing
. 1 1
L Vx>0, z(x) > lim z(x)= hm{ln[H—j——} =Inl1-0=0
X—>0 X—® x 1+ x

5z>0
y'>0
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6.  An important limit: the number e

y 1S increasing

n
an= (l + —j 1S monotonic increasing.
n

1 x+1

Lety=(1+—j .
X

X

A )
(T

Iny=(x+1) ln[1+1j

Letz=1n(l+lj—l
x) x
a:L.(_L}L
1+ ') X
_ 1 +L _—x+l+x 1 >0
x(1+x) x’ x’ (1+x) x(l+x)2

.. z is strictly increasing

5 Vx>0, z(x) < lim z(x)zhm[ln(nlj —l} In1-0=0

X—>0 X X

Soz<0
y' <0
y is decreasing

n+l
by :(1 + —j 1s monotonic decreasing.
n

(n+ 1)>e>(l+lj it is true for n > 1
n

n(l+lj>(1+lj
n n
n—1
n>(1+lj
n

(n+lj"1

n>|——-
n

n" > (n+1)"
Put 7 = 1000000, then (1000000)'%9%0 > (1000001)%%%%

(b) The fact that (ﬁj <n! has been proved in Example 14 (a)(ii).
e

wbsNtoe

2 3 4 n+l
e<(l+lj , e<(l+lj , e<(1+lj Y eee s e<(1+lj
1 2 3 n
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6.  An important limit: the number e

1 2 1 3 1 4 1 n+l
Multiplying e” <|1+—||1+=||1+=| -] 1+—
1 2 3 n
(23 (4Y ()™
e < J— J— J— e ——
1 2)3 n

n+l
o < (n+l)
n!
oL S n!
. en (n+1)n+l

e(n+1{ﬁj >e(n+1)(n’ﬁ’;;n+l 26[’1’11) n!> [1+%) [ L

Q

g [ZJW < nl<e(n +1)(ZJW

To prove that for n > 6, n!< n(ﬁj .
e

Induction on #.
7

7
When n =7, L.HS.=7!=5040, R.H.S. =7(—j = 5257

e
.. L.H.S.<R.H.S,, it is true forn =7

k
Suppose k!< k(kj for some positive integer k > 6.
e

o bn N tO e

k+l1
se< (1 + l)
k

ekk+1 < (k+ 1)k+1

K (k+1)°
'ek <( ekj

(k+ 1) = (k+ Dkl <(k+1)
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