Apollonius's Theorem a theorem about parallelogram

Created by Mr. Francis Hung

Last updated: February 13, 2024

Let ABCD is a parallelogram.

Let
$$AB = CD = a$$
; $AD = BC = b$.

Let
$$AC = p$$
; $BD = q$.

Then
$$2(a^2 + b^2) = p^2 + q^2$$

Proof: Let H, and K be points on DC (produced) such that $BK \perp CD$, $AH \perp CD$

Then $\triangle AHD \cong \triangle BKC$ (AAS)

Let
$$BK = AH = h$$
; $CK = HD = t$.

In
$$\triangle AHD$$
, $h^2 + t^2 = b^2$... (1)

In
$$\triangle AHC$$
, $h^2 + (a-t)^2 = p^2 \cdots (2)$

In
$$\triangle BKD$$
, $h^2 + (a+t)^2 = q^2 \cdots (3)$

$$(2) + (3)$$
: $2h^2 + 2a^2 + 2t^2 = p^2 + q^2$

Sub. (1):
$$2a^2 + 2b^2 = p^2 + q^2$$

Hence the theorem is proved.

The **median** of a triangle ABC.

In $\triangle ABC$, let BC = a, AC = b, AB = c.

Let *M* be the mid point of *BC*.

Then the line AM is called a median.

$$AM = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

Proof:

Produce AM to D so that AM = MD.

ABDC is a //-gram. (diags bisect each other)

$$BD = AC = b$$
, $CD = AB = c$

(opp. sides of //-gram)

By the above Apollonius Theorem,

$$2(b^2 + c^2) = a^2 + (2 AM)^2$$

$$AM = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2} \qquad \cdots (4)$$

Let *ABCD* be a quadrilateral.

Let
$$AB = a$$
, $BC = b$, $CD = b$, $DA = d$;

Let
$$AC = p$$
, $BD = q$.

Let M and N be the mid points of AC and BD respectively. MN = x.

In general,
$$a^2 + b^2 + c^2 + d^2 = p^2 + q^2 + 4x^2$$

If
$$a^2 + b^2 + c^2 + d^2 = p^2 + q^2$$
,

then ABCD is a parallelogram.

Proof:

By the above theorem on median,

In
$$\triangle ABC$$
, $BM^2 = \frac{2a^2 + 2b^2 - p^2}{4}$... (5)

In
$$\triangle ADC$$
, $DM^2 = \frac{2c^2 + 2d^2 - p^2}{4}$... (6)

In
$$\triangle BMD$$
, $MN^2 = \frac{2BM^2 + 2DM^2 - q^2}{4}$

Sub (5) and (6):

$$MN^{2} = x^{2} = \frac{a^{2} + b^{2} - \frac{p^{2}}{2} + c^{2} + d^{2} - \frac{p^{2}}{2} - q^{2}}{4} = \frac{a^{2} + b^{2} + c^{2} + d^{2} - p^{2} - q^{2}}{4}$$

$$\therefore a^2 + b^2 + c^2 + d^2 = p^2 + q^2 + 4x^2 \cdots$$
 (7) (The result due to Casey 1888)

If
$$a^2 + b^2 + c^2 + d^2 = p^2 + q^2$$
, then $MN = x = 0$

Therefore, M = N and hence the two diagonals bisect each other at M (= N).

ABCD is a parallelogram

The **median** of a triangle ABC. In $\triangle ABC$, let BC = a, AC = b, AB = c. Let M be the mid point of BC. Then the line AM is called a median.

$$AM = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

Let
$$MH = t$$
, then $CH = \frac{a}{2} - t$, $BH = \frac{a}{2} + t$

In
$$\triangle AMH$$
, $h^2 + t^2 = AM^2 \cdots (1)$

In
$$\triangle AHC$$
, $h^2 + \left(\frac{a}{2} - t\right)^2 = b^2 \cdots (2)$

In
$$\triangle ABH$$
, $h^2 + \left(\frac{a}{2} + t\right)^2 = c^2 \cdots (3)$

(2) + (3):
$$2h^2 + \frac{a^2}{2} + 2t^2 = b^2 + c^2$$

Sub. (1):
$$2AM^2 + \frac{a^2}{2} = b^2 + c^2$$

$$4AM^2 = 2b^2 + 2c^2 - a^2$$

$$AM = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

