I Euler's Formula on Graph Theory

Let G be a connected plane graph with V vertices, E edges and F faces, then V - E + F = 2.

Proof: Case 1: Suppose G has no cycle. Hence G is a tree.

E = V - 1 (every vertices are connected.) F = 1 (G has no cycle.)

$$V - E + F = V - (V - 1) + 1 = 2$$

Case 2: Suppose G has a cycle, use induction on the number of edges.

$$E = 1 \Rightarrow V = 1, F = 2 \Rightarrow V - E + F = 1 - 1 + 2 = 2.$$

It is true for E = 1

Suppose the formula to true for some positive integer k (E = k edges).

For a connected plane graph with k + 1 edges (with at least one cycle). Remove an edge from this cycle to obtain a new graph called G'. (The following graph is an example.)

G' is a connected plane graph with one edge less. (E' = k)

$$V' = V, F' = F - 1$$

$$V' - E' + F' = 2$$
 (by induction assumption)

$$V - k + (F - 1) = 2$$

$$V - (k+1) + F = 2$$

$$V - E + F = 2$$

The formula is still true for E = k + 1.

By the principle of Mathematical Induction, Euler's formula is true for all number of edges.

Example on Euler's formula

Given a cube,
$$V = 8$$
, $E = 12$, $F = 6$.

then
$$V - E + F = 2$$
.

Theorem There are only five Platonic solids. Each face is formed by identical regular polygons.

They are tetrahedron, cube (= hexahedron), octahedron, icosahedron and dodecahedron.

We shall prove the existence and uniqueness of Platonic solids by Euler's formula.

On each vertex, there are m edges ($m \ge 3$). There are V vertices, so altogether Vm edges. Each edge is connected by two vertices $\Rightarrow Vm = 2E \cdots (1)$

Each face is a regular polygon with n sides (edges) ($n \ge 3$). There are F faces, so altogether nF edges. Each edge is shared by two faces $\Rightarrow nF = 2E \cdots (2)$

From (1) and (2), substitute V and F in terms of E, m, n into Euler's Formula: V - E + F = 2

$$\frac{2E}{m} - E + \frac{2E}{n} = 2$$

$$E\left(\frac{2}{m} + \frac{2}{n} - 1\right) = 2$$

$$E(2m+2n-mn)=2mn\cdot\cdots\cdot(3)$$

: E is a positive integer and also RHS = 2mn is a positive integer

 $\therefore 2m + 2n - mn$ is a positive integer.

$$2m + 2n - mn = 4 - (m - 2)(n - 2)$$
 which is a positive integer.

:
$$m-2 > 0$$
 and $n-2 > 0$,

Possible values of (m-2)(n-2) may be 1, 2 or 3

When
$$(m-2)(n-2) = 1$$
,

$$m-2=1, n-2=1$$

$$m = 3, n = 3$$

Sub. into (3):
$$E(6+6-9) = 2(3)(3) \Rightarrow E = 6$$

$$V = \frac{2E}{m} = \frac{2 \times 6}{3} = 4$$

 $F = \frac{2E}{n} = 4$, the solid is a **tetrahedron**, **each face is an equilateral triangle**. (n = 3)

When
$$(m-2)(n-2) = 2$$
,

$$m-2=2$$
, $n-2=1$ or $m-2=1$, $n-2=2$

$$m = 4$$
, $n = 3$ or $m = 3$, $n = 4$

Sub. into (3):
$$E(8+6-12) = 2(3)(4) \Rightarrow E = 12$$

when
$$m = 3$$
, $n = 4$

$$V = \frac{2E}{m} = \frac{2 \times 12}{3} = 8$$

$$F = \frac{2E}{n} = 6$$
, the solid is a cube, each face is a square. $(n = 4)$

when
$$m = 4$$
, $n = 3$

$$V = \frac{2E}{m} = \frac{2 \times 12}{4} = 6$$

 $F = \frac{2E}{n} = 8$, the solid is an octahedron, each face is an equilateral triangle. (n = 3)

When
$$(m-2)(n-2) = 3$$
,

$$m-2=1$$
, $n-2=3$ or $m-2=3$, $n-2=1$

$$m = 3, n = 5 \text{ or } m = 5, n = 3$$

Sub. into (3):
$$E(6 + 10 - 15) = 2(3)(5) \Rightarrow E = 30$$

when
$$m = 3, n = 5$$

$$V = \frac{2E}{m} = \frac{2 \times 30}{3} = 20$$

$$F = \frac{2E}{n} = 12$$
, the solid is a dodecahedron, each face is a regular pentagon. $(n = 5)$

when
$$m = 5, n = 3$$

$$V = \frac{2E}{m} = \frac{2 \times 30}{5} = 12$$

$$F = \frac{2E}{n} = 20$$
, the solid is an icosahedron, each face is an equilateral triangle. $(n = 3)$

The following diagrams are the nets (plane developments) of the five Platonic solids.

Dodecahedron (two needed)

Icosahedron

Let one side of the Platonic solids be a. Express the volumes of the figures in terms of a.

Let *ABCD* be a regular tetrahedron with side *a*.

DE is the altitude from D onto the plane ABC.

E is the centroid of $\triangle ABC$.

It is easy to find the length of median of $\triangle ABC$.

$$median = a \sin 60^{\circ} = \frac{\sqrt{3}}{2} a$$

$$BE = \frac{2}{3} \text{ median} = \frac{\sqrt{3}}{3} a$$

$$DE = \sqrt{BD^2 - BE^2} = \sqrt{a^2 - \frac{a^2}{3}} = \sqrt{\frac{2}{3}} a$$

For a square with side a, the volume is a^3

For a regular octahedron with side a,

it can be cut into two identical right pyramids with square base.

In the figure,
$$BD = \sqrt{a^2 + a^2} = \sqrt{2} a$$

Height =
$$\sqrt{a^2 - \left(\frac{\sqrt{2}a}{2}\right)^2} = \frac{\sqrt{2}}{2}a$$

Total volume =
$$2 \times \frac{1}{3} \times a^2 \times \frac{\sqrt{2}}{2} a = \frac{\sqrt{2}}{3} a^3$$

The following figure shows a regular dodecahedron and a regular face:

Figure 1 (a)

Figure 1 (*b*)

Let the angle between two adjacent sides be 2θ . We can use figure 1(a) and figure 1(b) to find θ .

In figure 1(b),
$$\triangle AED$$
, $AE = \frac{a}{2\tan 36^{\circ}}$

$$EF = ED = \frac{a}{2\sin 36^{\circ}}$$

$$AF = AE + EF = \frac{a}{2\tan 36^{\circ}} + \frac{a}{2\sin 36^{\circ}}$$

$$= \frac{a}{2} \left(\frac{1 + \cos 36^{\circ}}{\sin 36^{\circ}} \right) = \frac{a}{2\tan 18^{\circ}}, \text{ by using the formula } t = \tan \frac{\theta}{2}.$$

Figure 1(c)

In figure 1(c), which is the cross section of figure 1(a),

$$\cos \theta = \frac{AE}{AO} = \frac{AE}{AC + CO} = \frac{AE}{AF \cos \theta + CO} = \frac{\frac{a}{2 \tan 36^{\circ}}}{\frac{a \cos \theta}{2 \tan 18^{\circ}} + \frac{a}{2}} = \frac{\tan 18^{\circ}}{\tan 36^{\circ} \cos \theta + \tan 36^{\circ} \tan 18^{\circ}}$$

 $(\tan 36^\circ)\cos^2\theta$ + $(\tan 36^\circ\tan 18^\circ)\cos\theta$ - $\tan 18^\circ$ = 0

$$\cos\theta = \frac{-\tan 18^{\circ} \tan 36^{\circ} \pm \sqrt{\left(\tan 18^{\circ} \tan 36^{\circ}\right)^{2} + 4\tan 18^{\circ} \tan 36^{\circ}}}{2\tan 36^{\circ}} = -\frac{1}{2} \left(\tan 18^{\circ} \pm \tan 54^{\circ}\right)$$

$$\cos \theta > 0 \Rightarrow \cos \theta = \frac{1}{2} \left(\tan 54^{\circ} - \tan 18^{\circ} \right)$$

$$= \frac{1}{2} \left(\frac{\sin 54^{\circ}}{\cos 54^{\circ}} - \frac{\sin 18^{\circ}}{\cos 18^{\circ}} \right) = \frac{1}{2} \left(\frac{\sin 54^{\circ} \cos 18^{\circ} - \cos 54^{\circ} \sin 18^{\circ}}{\cos 54^{\circ} \cos 18^{\circ}} \right)$$

$$= \frac{1}{2} \cdot \frac{\sin \left(54^{\circ} - 18^{\circ} \right)}{\cos 54^{\circ} \cos 18^{\circ}} = \frac{1}{2 \cos 18^{\circ}}$$

 $\theta = 58^{\circ}17'$; $2\theta = 116.6^{\circ}$, the angle between two adjacent sides is 116.6° .

$$\tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{\left(2 \cos 18^\circ\right)^2 - 1}$$

$$= \sqrt{2\left(2 \cos^2 18^\circ - 1\right) + 1}$$

$$= \sqrt{2 \cos 36^\circ + 1}$$

$$= \sqrt{2 \times \frac{1 + \sqrt{5}}{4} + 1}$$

$$= \sqrt{\frac{6 + 2\sqrt{5}}{4}}$$

$$= \sqrt{\frac{\left(\sqrt{5} + 1\right)^2}{2^2}}$$

$$= \frac{\sqrt{5} + 1}{2}$$

A regular dodecahedron can be regarded as 12 identical right pyramids with regular pentagonal base, side = a. If the area of the pentagonal base is B and the height of the cone is h, then the volume of the regular dodecahedron is

$$12(\frac{1}{3})Bh = 4 \times 5 \times \frac{1}{2} \times a \times AE \times OE$$

$$= 10a \times \frac{a}{2\tan 36^{\circ}} \times AE \tan \theta$$

$$= 10a \times \left(\frac{a}{2\tan 36^{\circ}}\right)^{2} \times \tan \theta$$

$$= \frac{5a^{3}}{2\left(\sec^{2} 36^{\circ} - 1\right)} \times \frac{\sqrt{5} + 1}{2}$$

$$= \frac{5(\sqrt{5} + 1)a^{3}}{4\left[\left(\frac{4}{\sqrt{5} + 1}\right)^{2} - 1\right]}$$

$$= \frac{5(\sqrt{5} + 1)^{3}a^{3}}{4\left[16 - (\sqrt{5} + 1)^{2}\right]}$$

$$= \frac{5(5\sqrt{5} + 3 \times 5 + 3 \times \sqrt{5} + 1)a^{3}}{4\left[16 - (6 + 2\sqrt{5})\right]}$$

$$= \frac{5(8\sqrt{5} + 16)a^{3}}{4(10 - 2\sqrt{5})}$$

$$= \frac{5(\sqrt{5} + 2)(5 + \sqrt{5})a^{3}}{(5 - \sqrt{5})(5 + \sqrt{5})}$$

$$= \frac{(15 + 7\sqrt{5})a^{3}}{4(10 - 2\sqrt{5})}$$

The following figure shows a regular icosahedron and a regular face:

Figure 2 (a)

Figure 2(b)

Let the angle between two adjacent sides be 2θ . We can use figure 2(a) and figure 2(b) to find θ .

In figure 2(b),
$$\triangle YQR$$
, $RQ = \frac{a}{2 \tan 60^{\circ}} = \frac{a}{2\sqrt{3}}$

$$QX = QY$$

$$= \frac{a}{2 \sin 60^{\circ}} = \frac{a}{\sqrt{3}}$$

$$RX = \frac{a}{2} \tan 60^{\circ} = \frac{\sqrt{3}}{2} a$$

Figure 2(c)

Figure 2(d)

In the figure 2(c),
$$\cos \theta = \frac{RQ}{RP}$$

$$= \frac{RQ}{RN + NP}$$

$$= \frac{RQ}{RX \cos \theta + NP}$$

$$= \frac{\frac{a}{2\sqrt{3}}}{\frac{\sqrt{3}}{2}a\cos \theta + \frac{a}{2}} = \frac{1}{3\cos \theta + \sqrt{3}}$$

$$3\cos^{2}\theta + \sqrt{3}\cos\theta - 1 = 0$$

$$\cos\theta = \frac{-\sqrt{3} \pm \sqrt{3 + 12}}{6} = \frac{\sqrt{15} - \sqrt{3}}{6}$$

$$= 0.3568 \text{ or } -0.9342 \text{ (rejected)}$$

$$\theta = 69^{\circ}6'$$

The angle between two adjacent sides is $2\theta = 138.189^{\circ}$

Platonic solids

$$\tan^{2}\theta = \sec^{2}\theta - 1$$

$$= \frac{36}{\left(\sqrt{15} - \sqrt{3}\right)^{2}} - 1$$

$$= \frac{36}{3\left(\sqrt{5} - 1\right)^{2}} - 1$$

$$= \frac{12}{6 - 2\sqrt{5}} - 1$$

$$= \frac{6}{3 - \sqrt{5}} \cdot \frac{3 + \sqrt{5}}{3 + \sqrt{5}} - 1$$

$$= \frac{3}{2}(3 + \sqrt{5}) - 1$$

$$= \frac{1}{2}(7 + 3\sqrt{5})$$

$$= \frac{1}{4}(14 + 6\sqrt{5})$$

$$= \left[\frac{1}{2}(3 + \sqrt{5})\right]^{2}$$

$$\tan \theta = \frac{1}{2}(3 + \sqrt{5})$$

The regular icosahedron can be regarded as 20 identical right pyramids with equilateral triangular base, side = a. The volume of the regular icosahedron is

$$20 \times \frac{1}{3} \times \frac{1}{2} \times a^2 \sin 60^\circ \times PQ = \frac{5a^2}{\sqrt{3}} \times RQ \tan \theta$$
$$= \frac{5a^2}{\sqrt{3}} \times \frac{a}{2\sqrt{3}} \times \frac{1}{2} \left(3 + \sqrt{5}\right)$$
$$= \frac{5}{12} \left(3 + \sqrt{5}\right) a^3$$

參考資料: 等周問題 香港時代圖書有限公司, 1975年