In $\triangle ABC$, let AD, BE, CF be the altitudes.

If $\triangle ABC$ is an acute-angled triangle, then $AD = c \sin B = b \sin C$

 $BE = a \sin C = c \sin A$

$$\Rightarrow \begin{cases} \frac{b}{\sin B} = \frac{c}{\sin C} \\ \frac{a}{\sin A} = \frac{c}{\sin C} \end{cases}$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

If $\triangle ABC$ is an obtuse-angled triangle,

WLOG assume $\angle A > 90^{\circ}$, then

$$AD = c \sin B = b \sin C$$

$$BE = a \sin C = c \sin (180^{\circ} - A)$$

$$\Rightarrow \begin{cases} \frac{b}{\sin B} = \frac{c}{\sin C} \\ \frac{a}{\sin A} = \frac{c}{\sin C} \end{cases}$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

If $\triangle ABC$ is a right-angled triangle,

WLOG assume $\angle A = 90^{\circ}$, then

$$b = a \sin B \Rightarrow \frac{a}{\sin A} = a = \frac{b}{\sin B}$$

$$c = a \sin C \Rightarrow \frac{a}{\sin A} = a = \frac{c}{\sin C}$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

The **perpendicular bisector** of a line segment.

Given a line segment AB.

A line segment EF intersects AB at M.

If (1) $EF \perp AB$ and (2) AM = MB;

then EF is called the perpendicular bisector of AB.

Theorem 1 Given $\triangle ABC$. The perpendicular bisectors AB and AC will intersect at a point O.

Let PQ and RS be the perpendicular bisectors of AC and AB respectively. E and F are the mid-points of AC and AB respectively.

Join *EF*. Let $\angle AFE = \alpha$, $\angle AEF = \beta$

$$\angle SFE = 90^{\circ} - \alpha$$
, $\angle QEF = 90^{\circ} - \beta$

$$\angle SFE + \angle QEF = 90^{\circ} - \alpha + 90^{\circ} - \beta = 180^{\circ} - (\alpha + \beta) \le 180^{\circ}$$

 \therefore PQ and RS intersect at a point O.

Theorem 2 $\angle A$ is the largest angle in $\triangle ABC$. The perpendicular bisectors AB and AC intersect at O.

Case 1 If $\angle A = 90^{\circ}$, then O is the mid-point of BC.

Case 2 If $\angle A \le 90^{\circ}$, then O lies inside $\triangle ABC$.

Case 3 If $\angle A > 90^{\circ}$, then O lies outside $\triangle ABC$.

Proof: Case 1 If $\angle A = 90^{\circ}$.

Let *FO* and *EO* be the perpendicular bisectors of *AB* and *AC* respectively which meet at *O*. *E* and *F* are the mid-points of *AC* and *AB* respectively. Join *AO*, *BO* and *CO*.

 $\angle FOE = 90^{\circ} (\angle \text{ sum of polygon})$

 $\Delta BOF \cong \Delta AOF$ (S.A.S.)

 $\triangle AOF \cong \triangle OAE$ (S.S.S.)

 $\triangle OAE \cong \triangle OCE (S.A.S.)$

 $\therefore \Delta BOF \cong \Delta OCE$

 $\angle FBO = \angle EOC \text{ (corr. } \angle s, \cong \Delta s)$

 $\angle BOF = \angle OCE \text{ (corr. } \angle s, \cong \Delta s)$

In $\triangle BOF$, $\angle BOF + \angle FBO = 90^{\circ}$ (\angle sum of \triangle)

 $\therefore \angle BOF + \angle FOE + \angle EOC = 180^{\circ}$

B, O, C are collinear

The two perpendicular bisectors intersect at O, which is the mid-point of BC.

Case 2 If $\angle A < 90^{\circ}$.

Join AO, BO and CO.

With the same arguments as above,

$$\Delta BOF \cong \Delta AOF$$
, $\Delta OAE \cong \Delta OCE$ (S.A.S.)

$$OB = OA = OC$$
 (corr. sides, $\cong \Delta$ s)

Let $\angle OAF = x$, $\angle OAE = y$.

Then
$$\angle B$$
, $\angle C \le \angle A = x + y \le 90^{\circ}$

$$\angle OBF = x$$
, $\angle OCE = y$ (corr. $\angle s$, $\cong \Delta s$)

$$\angle AOF = \angle BOF = 90^{\circ} - x \ (\angle \text{ sum of } \Delta)$$

$$\angle AOE = \angle COE = 90^{\circ} - y (\angle \text{ sum of } \Delta)$$

Consider the marked angle $\angle BOC$ in the figure.

$$\angle BOC = 2(90^{\circ} - x) + 2(90^{\circ} - y)$$

$$= 360^{\circ} - 2(x + y)$$

$$> 360^{\circ} - 2 \times 90^{\circ} > 180^{\circ} \cdot \dots \cdot (*)$$

If O lies outsides $\triangle ABC$, then $\angle BOC \le 180^{\circ}$

Both cases are contradictory to (*)

 \therefore O must lie inside $\triangle ABC$.

Case 3 If $\angle A > 90^{\circ}$.

Join AO, BO and CO.

With the same arguments as above,

 $\Delta BOF \cong \Delta AOF$, $\Delta OAE \cong \Delta OCE$ (S.A.S.)

OB = OA = OC (corr. sides, $\cong \Delta$ s)

Let $\angle OAF = x$, $\angle OAE = y$.

Then $\angle A = x + y > 90^{\circ} > \angle B$, $\angle C$

$$\angle OBF = x$$
, $\angle OCE = y$ (corr. $\angle s$, $\cong \Delta s$)

$$\angle AOF = \angle BOF = 90^{\circ} - x \ (\angle \text{ sum of } \Delta)$$

$$\angle AOE = \angle COE = 90^{\circ} - y \ (\angle sum of \Delta)$$

Consider the marked reflex angle $\angle BOC$ in the figure.

Reflex
$$\angle BOC = 2(90^{\circ} - x) + 2(90^{\circ} - y)$$

= $360^{\circ} - 2(x + y)$
 $< 360^{\circ} - 2 \times 90^{\circ} = 180^{\circ} \cdot \dots \cdot (**)$

If O lies insides $\triangle ABC$, then reflex $\angle BOC > 180^{\circ}$

Both cases are contradictory to (**)

 \therefore O must lie outside $\triangle ABC$.

Theorem 3 The three perpendicular bisectors of a triangle ABC are concurrent at a point O.

O is called the **circumscribed centre** (or **circumcentre** in short form). We can use O as centre to draw a circle to pass through A, B, C. The circle is called the **circumscribed circle** (or **circum-circle** in short form) and the radius (R) is called the **circum-radius**.

Furthermore,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
.

Case 1 $\triangle ABC$ is a right-angled triangle. WLOG assume $\angle A = 90^{\circ}$.

- (1) Draw the perpendicular bisector of AB and the perpendicular bisector of AC.
- By **Theorem 2** case 1, the three perpendicular bisectors are concurrent at the mid-point of BC, O.
- (2) Join *OA*.
- (3) Use O as centre, OA as radius to draw a circle.

BC is the diameter of the circle.

$$\angle B = \frac{1}{2} \angle AOC = \angle COE \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$$

$$\angle C = \frac{1}{2} \angle AOB = \angle BOF \ (\angle \text{ at centre twice } \angle \text{ at } \odot^{\text{ce}})$$

In
$$\triangle COE$$
, $\frac{CE}{OC} = \sin \angle COE \Rightarrow \frac{b}{2R} = \sin B \Rightarrow \frac{b}{\sin B} = 2R$

In
$$\triangle BOF$$
, $\frac{BF}{OB} = \sin \angle BOF \Rightarrow \frac{c}{2R} = \sin C \Rightarrow \frac{c}{\sin C} = 2R$

$$\frac{a}{\sin A} = \frac{2R}{\sin 90^{\circ}} = 2R$$

Case 2 $\triangle ABC$ is an acute-angled triangle. $\angle A \ge \angle B$, $\angle C$

- Let OE and OF be the two perpendicular bisectors of AC and AB respectively which intersect at O.
- (2) Join *OA*, *OB* and *OC*.
- (3) Draw $OD \perp BC$, where D is the foot of perpendicular.

By the property of perpendicular bisectors,

$$AE = CE, AF = BF, OE \perp AC, OF \perp AB.$$

Then $\triangle AOE \cong \triangle COE$ (S.A.S.)

$$\Delta AOF \cong \Delta BOF$$
 (S.A.S.)

$$\therefore OB = OA = OC$$
 (corr. sides, $\cong \Delta s$)

$$\Delta BOD \cong \Delta COD$$
 (R.H.S.)

$$\therefore BD = CD$$
 (corr. sides, $\cong \Delta s$)

 \therefore OD is a perpendicular bisector of BC.

$$\therefore$$
 $\angle BOD = \angle COD = \angle A$ (\angle at centre twice \angle at \odot^{ce}) and $BD = \frac{a}{2}$ (corr. sides, $\cong \Delta s$)

Let the circumscribed radius be R.

In
$$\triangle BOD$$
, $\frac{BD}{OB} = \sin \angle BOD \Rightarrow \frac{\frac{a}{2}}{R} = \sin A \Rightarrow \frac{a}{\sin A} = 2R$

$$\frac{AOC}{OB} = \frac{\sin 2BOD}{R} \Rightarrow \frac{\pi}{R} = \frac{\sin A}{\sin A} = \frac{2\pi}{\sin A}$$

$$\frac{\angle AOC}{AOC} = \frac{2\angle B}{AOC} = \frac{2\angle AOB}{AOC} = \frac{2\triangle B}{AOC} = \frac{2\triangle B}{AOC$$

$$\therefore \Delta AOE \cong \Delta COE$$

$$\therefore \angle AOE = \angle COE = \angle B$$
 and $CE = \frac{b}{2}$

In
$$\triangle COE$$
, $\frac{CE}{OC} = \sin \angle COE$

$$\Rightarrow \frac{\frac{b}{2}}{R} = \sin B \Rightarrow \frac{b}{\sin B} = 2R$$

$$\angle AOB = 2\angle C$$
 (\angle at centre twice \angle at \odot^{ce})

$$\therefore \Delta AOF \cong \Delta BOF$$

$$\therefore \angle AOF = \angle BOF = \angle C \text{ and } BF = \frac{c}{2}$$

In
$$\triangle BOF$$
, $\frac{BF}{OB} = \sin \angle BOF$

$$\Rightarrow \frac{\frac{c}{2}}{R} = \sin C \Rightarrow \frac{c}{\sin C} = 2R$$

Case 3 $\triangle ABC$ is an obtuse-angled triangle. WLOG assume $\angle A > 90^{\circ} > \angle B$, $\angle C$

- Let *OE* and *OF* be the two perpendicular bisectors of *AC* and AB respectively which intersect at O.
- (2) Join OA, OB and OC.
- (3) Draw $OD \perp BC$, where D is the foot of perpendicular.

By the property of perpendicular bisectors,

$$AE = CE, AF = BF, OE \perp AC, OF \perp AB.$$

Then
$$\triangle AOE \cong \triangle COE$$
 (S.A.S.)

$$\triangle AOF \cong \triangle BOF$$
 (S.A.S.)

$$\therefore OB = OA = OC$$
 (corr. sides, $\cong \Delta s$)

$$\Delta BOD \cong \Delta COD$$
 (R.H.S.)

$$\therefore BD = CD$$
 (corr. sides, $\cong \Delta s$)

 \therefore OD is a perpendicular bisector of BC.

The three perpendicular bisectors are concurrent at a point O.

Reflex
$$\angle BOC = 2\angle A$$
 (\angle at centre twice \angle at \odot^{ce})

$$\angle BOC = 360^{\circ} - 2\angle A$$
 (\angle s at a point)

$$\therefore \Delta BOD \cong \Delta COD$$

$$\therefore \angle BOD = \angle COD = 180^{\circ} - \angle A \text{ (corr. } \angle s, \cong \Delta's) \text{ and } BD = \frac{a}{2} \text{ (corr. sides, } \cong \Delta s)$$

Let the circumscribed radius be R.

In
$$\triangle BOD$$
, $\frac{BD}{OB} = \sin \angle BOD$

$$\frac{\frac{a}{2}}{R} = \sin(180^\circ - A)$$

$$\frac{a}{\sin A} = 2R$$

Therefore, we have proved the **Sine formula** $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,

where R is the radius of the circumscribed circle.

Use Heron's formula to find the area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$

where $s = \frac{1}{2}(a+b+c)$ (Half of the perimeter of $\triangle ABC$).

$$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ab\sin C$$

$$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ab\frac{c}{2R}$$

$$\Rightarrow R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$

This is the formula of the radius in terms of the sides of triangle.

Example (A.S.A.) a = 5, $\angle B = 60^{\circ}$, $\angle C = 45^{\circ}$. Find b.

$$\angle A = 75^{\circ} (\angle \text{ sum of } \Delta)$$

$$\frac{5}{\sin 75^{\circ}} = \frac{b}{\sin 60^{\circ}}$$

$$b = \frac{5\sin 60^{\circ}}{\sin 75^{\circ}} = 4.48 \text{ (correct to 3 sig. fig.)}$$

Example (S.S.A.) $a = 5, b = 6, \angle B = 60^{\circ}$. Find $\angle A$.

$$\frac{5}{\sin A} = \frac{6}{\sin 60^{\circ}}$$

$$\sin A = 0.721687836$$

$$A = 46.2^{\circ} \text{ or } 180^{\circ} - 46.2^{\circ}$$

$$A = 46.2^{\circ} \text{ or } 133.8^{\circ}$$

But when
$$A = 133.8^{\circ}$$
, $A + B = 193.8^{\circ} > 180^{\circ}$

$$\therefore A = 46.2^{\circ}$$
 only.