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In the figure 1(a), PABCD is a right pyramid with 

square base ABCD, length of side = b. 

P is the vertex. O is the projection of P on ABCD. 
The height PO = h and ∠POC = 90°. 

Volume = hr 2
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In the figure 1(b), ABCDHEFG is a frustum 
formed by cutting off a smaller pyramid PEFGH 
with length of side = a from the larger pyramid 
PABCD. 

 
 Figure 1 (a) Figure 1 (b) 

Q is the projection of P on EFGH. 

Let M and N be the mid-points of BC and FG respectively. 

∠PQN = 90°, ∠POM = 90°. 
Let the distance between the upper base EFGH and the lower base ABCD be k, i.e. QO = k. 

Then the volume of the frustum is V = ( )22
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Proof: ∆PQN ~ ∆POM (A.A.A.) 

QN

OM

PQ

PO =  (corr. sides, ~∆s) 

2

2
a

b

PQ

kPQ =+
 

a

b

PQ

k =+1  

a

ab

a

b

PQ

k −=−= 1  

PQ =
ab

ka

−
 

V = volume of the big pyramid – volume of the small pyramid 
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In the figure 2, a right circular frustum is formed by cutting off a smaller 
cone with radius r from a larger cone with radius R. 
P is the common vertex of the cones. O and Q are the projection of P on the 
top circle and the base circle respectively. ∠PQB = 90°, ∠POA = 90°. 
PBA is a straight line, QB = r and OA = R. 
The height of the frustum OQ = k. 
To find the volume and the curved surface area of the frustum. 
∆PQB ~ ∆POA (A.A.A.) 
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V = volume of the big cone – volume of the small cone 
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S = curved surface area of big cone – curved surface area of the small cone 

 
Figure 2 
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In the figure 3, a frustum is formed by cutting off a smaller triangular 
pyramid from a larger triangular pyramid. 
P is the vertex of the triangular pyramid.  
ABC and DEF are the upper bases and the lower bases respectively 
such that AB // DE, BC // EF, AC // DF. 
O and Q are the projection of P on ABC and DEF respectively. 
∠PQF = 90°, ∠POC = 90°. P, F, C are collinear, BC = b and EF = a. 
The height of the frustum OQ = k. 
To find the volume of the frustum V in terms of k, a and b. 
∆PEF ~ ∆PBC, ∆PQF ~ ∆POC, ∆DEF ~ ∆ABC (A.A.A.) 
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Figure 3 

V = volume of the big pyramid – volume of the small pyramid 
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