Limit concepts

Created by Mr. Francis Hung on 20220211. Last updated: 11 February 2022.

Objective: to teach the concept of limits through examples.

Introduction of limit concepts (1 minute)

- (1) $\lim_{x \to a} f(x)$ is read as limit as x tends to a of f(x).
- If the graph of y = f(x) is continuous at x = a, then the value of $\lim_{x \to a} f(x)$ is f(a). (2)

We write $\lim_{x \to a} f(x) = f(a)$.

Example 1 (3 minutes)

For the graph of $y = x^2$, which is continuous everywhere.

We write $f(x) = x^2$, and $\lim_{x \to 2} x^2 = 2^2 = 4$ What is the value of $\lim_{x \to -1} x^2$?

 $f(x) = \frac{x^2 - 9}{x - 3} \text{ for } x \neq 3$

Page 1

Example 2 (8 minutes)

Define a function $f(x) = \frac{x^2 - 9}{x - 3}$ for $x \ne 3$.

Then $f(x) = \frac{(x-3)(x+3)}{x-3} = x+3$ for $x \ne 3$. $f(x) = \begin{cases} x+3 & \text{for } x \ne 3\\ \text{undefined} & \text{for } x = 3 \end{cases}$

$$f(x) = \begin{cases} x+3 & \text{for } x \neq 3\\ \text{undefined} & \text{for } x = 3 \end{cases}$$

The graph of y = f(x) is the straight line y = x + 3 except x = 3, which is discontinuous at x = 3, as shown on the right.

What is the value of $\lim_{x \to -1} \frac{x^2 - 9}{x - 3}$?

As y = f(x) is discontinuous at x = 3, then we consider the **left-hand limit** and **the right-hand limit**.

Left-hand limit is to find the limiting value of y = f(x) as x tends to a (in this case x tends to 3) from the left side of a. x is very close to a and smaller than a but **not equal** to a.

Example of left-hand limit:

Example of feet mane mine.											
Х	2.5	2.6	2.88	2.932	2.997	2.9999	2.999989				
f(x)	5.5	5.6	5.88	5.932	5.997	5.9999	5.999989				

We see that $\lim_{x\to 3^-} \frac{x^2-9}{x-3} = 6$ (the left-hand limit is 6.)

Similarly, the right-hand limit to find the limiting value of y = f(x) as x tends to a (in this case x tends to 3) from the right side of a. x is very close to a and bigger than a but **not equal** to a.

Example of right-hand limit:

Х	4.2	3.55	3.021	3.0078	3.00002	3.0000004
f(x)	7.2	6.55	6.021	6.0078	6.00002	6.0000004

We see that $\lim_{x\to 3^+} \frac{x^2-9}{x-3} = 6$ (the right-hand limit is 6.)

Theorem The limit of a function exists if and only if the left hand limit is equal to the right limit.

In the above case, $\because \lim_{x \to 3^{-}} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3^{+}} \frac{x^2 - 9}{x - 3} = 6$

$$\therefore \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \text{ exists and equal to 6. (We write } \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6)$$

Example 3 (3 minutes)

Consider the graph of $y = \frac{|x|}{x} = \begin{cases} 1 & \text{when } x > 0 \\ \text{undefined} & \text{when } x = 0 \\ 1 & \text{when } x < 0 \end{cases}$ when x < 0

At x = 4.5, (the graph is continuous at x = 4.5), $\lim_{x \to 4.5} \frac{|x|}{x}$

 $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 \text{ (find the limit of the function } \frac{|x|}{x} \text{ as } x \text{ tends to 0 from the left hand side.)}$ $\lim_{x \to 0^{+}} \frac{|x|}{x} = 1 \text{ (find the limit of the function } \frac{|x|}{x} \text{ as } x \text{ tends to 0 from the right hand side.)}$

$$\therefore \lim_{x \to 0^{-}} \frac{|x|}{x} \neq \lim_{x \to 0^{+}} \frac{|x|}{x}$$

 $\therefore \lim_{x \to 0} \frac{|x|}{x}$ does not exist.

Example 4 (3 minutes)

Consider a new function $y = 10^{\log x} = \begin{cases} x & \text{when } x > 0 \\ \text{undefined} & \text{when } x \le 0 \end{cases}$ $y = 10^{\log x} = \begin{cases} x & \text{when } x > 0 \\ \text{undefined} & \text{when } x \le 0 \end{cases}$ $y = 10^{\log x} = \begin{cases} x & \text{when } x > 0 \\ \text{undefined} & \text{when } x \le 0 \end{cases}$ 2

 $\lim_{x \to 9.99} 10^{\log x} = 9.99, \quad \lim_{x \to -3} 10^{\log x} \quad \text{does not exists},$

 $\lim_{x \to \infty} 10^{\log x}$ does not exists, $\lim_{x \to \infty} 10^{\log x} = 0$

$$\therefore \lim_{x \to 0^{-}} 10^{\log x} \neq \lim_{x \to 0^{+}} 10^{\log x}$$

 $\lim_{x \to \infty} (10^{\log x})$ does not exist

Example 5 (3 minutes)

f(a) is defined, and

$$\lim_{x \to a^{-}} f(x) = 1.5, \quad \lim_{x \to a^{+}} f(x) = 1$$

$$\therefore \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

$$\therefore \lim_{x \to a} f(x)$$
 does not exist

Example 6 (3 minutes)

f(a) is undefined, and

$$\lim_{x \to a^{-}} f(x) = -\infty, \quad \lim_{x \to a^{+}} f(x) = \infty$$

$$\therefore \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

$$\therefore \lim_{x \to a} f(x) \text{ does not exist}$$

Example 7 (3 minutes)

Consider a function $y = \frac{1}{x^2}$ for $x \neq 0$

When x = 0, y is undefined.

The graph is discontinuous at x = 0.

$$\lim_{x \to 0^{-}} \frac{1}{x^{2}} = \infty, \quad \lim_{x \to 0^{+}} \frac{1}{x^{2}} = \infty \text{ (this should be a finite number)}$$

$$\therefore \lim_{x \to 0^{-}} \frac{1}{x^{2}} = \lim_{x \to 0^{+}} \frac{1}{x^{2}} = \infty$$

$$\therefore \lim_{x\to 0} \frac{1}{x^2}$$
 does not exist

Example 7 (3 minutes)

Consider the function $y = \tan x$

 $\lim_{x \to 90^{\circ^{-}}} \tan x = \infty$, $\lim_{x \to 90^{\circ^{+}}} \tan x = -\infty$

- $\therefore \lim_{x \to 90^{\circ^{-}}} \tan x \neq \lim_{x \to 90^{\circ^{+}}} \tan x$
- $\therefore \lim_{x\to 90^{\circ}} \tan x$ does not exist