To evaluate
$$\lim_{x\to\infty}\frac{\sin x}{x}$$
.

Created by Mr. Francis Hung on 20210426. Last updated: 11 February 2022.

Squeezing principle (Sandwich principle) for limits

Suppose $g(x) \le f(x) \le h(x)$ for all x such that $a \le x \le b$ and also suppose that $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = M$, where $a \le c \le b$.

Then $\lim_{x\to c} f(x)$ exists and equal to M.

Evaluate $\lim_{x\to\infty} \frac{\sin x}{x}$.

 $-1 \le \sin x \le 1$, where x is in radians.

$$-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$$
, where $x > 0$.

$$\lim_{x \to \infty} \left(-\frac{1}{x} \right) = \lim_{x \to \infty} \left(\frac{1}{x} \right) = 0$$

Then by squeezing principle, $\lim_{x\to\infty} \frac{\sin x}{x}$ exists and equal to 0.

Similarly, $-\frac{1}{x} \ge \frac{\sin x}{x} \ge \frac{1}{x}$, where x < 0.

$$\lim_{x \to \infty} \left(-\frac{1}{x} \right) = \lim_{x \to \infty} \left(\frac{1}{x} \right) = 0$$

Then by squeezing principle, $\lim_{x\to -\infty} \frac{\sin x}{x}$ exists and equal to 0.

L