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Let f, g, h be continuous real functions such that Ux [JR: h(x) = fog(x) = f(g(x))
Then h’(x) = f ’(g(x))g’(x), where h’ denotes the derivative of h .
This is often refer to as the chain rule for differentiation.
Proof: Let g(x) =y, and let g(x + Ax) =y + Ay
= Ay = g(x + Ax) — g(x)
Thus: Ay - OasAx - 0

Ay dy
and — - —=g’(x) -+ 1
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There are two cases to consider:

Case 1

Suppose g’(x) # 0 and that Ax is small but non-zero.
Thus Ay # 0 from (1) above, and :

h(x+Ax)-h(x)  f(g(x+ax))-f(g(x))
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Hence the result.

Case 2

Now suppose g’(x) = 0 and that Ax is small but non-zero.
Again, there are two possibilities:

Case 2a

h(x+Ax)—h(x)
If Ay =0, then =0
Dx

Hence the result.

Case 2b
If Ay # 0, then h(X+Ax)_h(x):f(y"'Ay)—f(y)ﬁ
Ax Ay Ax

As Ay - 0:

f(y+Ay)-f
(1): AL (y)af’(y)

Ay

Ay
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) h(x+Ax)—h(x) ’

Thus: gr}}) — () () =0

Again, hence the result.

All cases have been covered, the proof is complete.
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