Differentiation of composite functions

Created by Mr. Francis Hung on 20220212. Last updated: 12 February 2022.

Let f, g, h be continuous real functions such that $\forall x \in \mathbf{R}$: $h(x) = f \circ g(x) = f(g(x))$

Then h'(x) = f'(g(x))g'(x), where h' denotes the derivative of h.

This is often refer to as the chain rule for differentiation.

Proof: Let g(x) = y, and let $g(x + \Delta x) = y + \Delta y$

$$\Rightarrow \Delta y = g(x + \Delta x) - g(x)$$

Thus:
$$\Delta y \rightarrow 0$$
 as $\Delta x \rightarrow 0$

and
$$\frac{\Delta y}{\Delta x} \rightarrow \frac{dy}{dx} = g'(x) \cdots (1)$$

There are two cases to consider:

Case 1

Suppose $g'(x) \neq 0$ and that Δx is small but non-zero.

Thus $\Delta y \neq 0$ from (1) above, and :

$$\lim_{\Delta x \to 0} \frac{h(x + \Delta x) - h(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)} \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(y + \Delta y) - f(y)}{\Delta y} \cdot \frac{\Delta y}{\Delta x}$$

$$= f'(y)g'(x)$$

Hence the result.

Case 2

Now suppose g'(x) = 0 and that Δx is small but non-zero.

Again, there are two possibilities:

Case 2a

If
$$\Delta y = 0$$
, then $\frac{h(x + \Delta x) - h(x)}{\Delta x} = 0$

Hence the result.

Case 2b

If
$$\Delta y \neq 0$$
, then $\frac{h(x + \Delta x) - h(x)}{\Delta x} = \frac{f(y + \Delta y) - f(y)}{\Delta y} \cdot \frac{\Delta y}{\Delta x}$

As
$$\Delta y \rightarrow 0$$
:

(1):
$$\frac{f(y+\Delta y)-f(y)}{\Delta y} \to f'(y)$$

(2):
$$\frac{\Delta y}{\Delta x} \to 0$$

Thus:
$$\lim_{\Delta x \to 0} \frac{h(x + \Delta x) - h(x)}{\Delta x} = f'(y) g'(x) = 0$$

Again, hence the result.

All cases have been covered, the proof is complete.