Supplementary Exercise on differentiation

First created in 1986, retyped as MS WORD document on 20080530 by Mr. Francis Hung

Last updated: 12 February 2022

1. A vessel is in the form of a hollow cone of vertical angle 60°, with vertex downwards and axis vertical. Water is poured into it at the rate of 4 cm³/s. When the depth of water is 6 cm, at what rate is

- (a) the water rising;
- (b) the wetted surface increasing?
- 2. A conical funnel, whose height is equal to the diameter of its top, allows water to flow out of it through a small hole at the vertex at the rate of 0.1 cm³/s, the axis of the funnel being vertical. At what rate is the water level descending when the depth of water in the funnel is 3 cm?

3. A vessel is in the form of a frustum of a cone of semi-vertical angle 45°. The radius of the base of the vessel is a m, the base being the smaller end. Water is poured into the vessel at the rate of b m³/min. Find the rate at which the level of water is rising when it is c m above the base.

- 4. A spherical balloon is being inflated, the volume increasing at the constant rate of 15 cm³/s. At what rate is the radius increasing when it is 10 cm long?
- 5. A spherical bubble is decreasing in volume at the rate of 2 cm³/s. Find the rate at which the surface area is diminishing when the radius is 4 cm.
- 6. **Modified from 1985 Paper 1 Q9**Find the length of the longest ladder which can be carried around the corner of a corridor, whose dimensions are indicated in the figure on the right, if it is assumed that the ladder is moved parallel to the floor.

- 7. Find two numbers such that their sum is twelve and that the sum of the cube of one and the square of the other is a minimum. Give your answer correct to one decimal place.
- 8. A feeding trough is to be made from bending a long sheet of metal 80 cm wide to give a trapezoidal cross-section with sides of equal length x cm inclined at 60° to the horizontal. Find the value of x for which the cross-sectional area is the greatest.

- 9. The distance between vehicles passing along a busy road at an average speed of v m/s is $\left(3 + \frac{v}{3} + \frac{v^2}{300}\right)$ m. How many vehicles pass during an hour? What speed makes this number a maximum?
- 10. A metal tank is to be built in the form of a rectangular parallelepiped, open at the top and of given volume V, the sides of the base being in the ratio 2:1. Find its dimensions if the least area of thin sheet metal is to be used.

11. Prove that, as x increases from 0 to $\frac{\pi}{2}$, the function $x - \frac{3\sin x}{2 + \cos x}$ continually increases.

12. The plane ends of a right circular cylinder, of height h and radius r, are scooped out to form hollow hemispherical surfaces of radius r. If the volume V remaining is given, by considering $\frac{dS}{dr}$, find the value of $\frac{r}{h}$ in order that the total surface area S may be a minimum, and determine this minimum in terms of V. (Hint: First show that $S = \frac{20\pi r^2}{3} + \frac{2V}{r}$.)

13. The figure shows a circle of centre O and radius r inscribed in a variable isosceles triangle ABC with AB = AC. Let $\angle ACB = 2\theta$. Prove that the area of $\triangle ABC = r^2 \cot^2 \theta \tan 2\theta$.

Hence show that the area of the triangle is a minimum (and not a maximum) when the triangle is equilateral.

- 14. As shown in the figure, a right circular cylinder is cut from a solid right circular cone whose axis coincides with that of the cylinder. Show that
 - (a) $h = H \frac{Hr}{R}$, where H, R are the height and radius of the cone respectively, and h, r are the height and the radius of the cylinder respectively.
 - the cylinder respectively.

 (b) Volume of the cylinder $V = \pi r^2 \left(H \frac{Hr}{R} \right)$.

 Hence prove that the volume of the cylinder cannot exceed $\frac{4}{9}$ that of the cone.

15. 1984 Paper 1 Q11

In the given figure, AB is a railway 50 km long. C is a factory h km from B such that $\angle ABC = 90^{\circ}$. Goods are to be transported from C to A. The transportation cost per tonne of goods across the country by truck is \$2 per km, whereas by railway it is \$1 per km.

(a) Let P be a point on the railway, $\angle PCB = \theta$, and let \$N be the total transportation cost for 1 tonne of goods from C to P and then to A. Find N in terms of θ and h.

- (b) If h = 50, show that the least transportation cost for 1 tonne of goods from C to A is $\$50(\sqrt{3}+1)$.
- (c) (i) Suppose $h > 50\sqrt{3}$. Show that $\tan \theta < \frac{1}{\sqrt{3}}$, and deduce that $\frac{dN}{d\theta} < 0$ for all possible values of θ .

- 16. ABC is a triangle in which AB = AC and $\angle BAC = 2\theta$. The median AD = h. Find a point P on AD so that the product of the distances from P to the three sides of $\triangle ABC$ is a maximum.
- 17. If $y = x^3 3x^2 + 4x$, prove that $\frac{dy}{dx}$ is positive for all real values of x.

Hence prove that y is positive for all positive real values of x.

Created by Mr. Francis Hung

1984 Paper 2 Q11

In the given figure, ABC is a triangle with $\angle A = \theta$. P is a point on AB such that $PA = PB = PC = \ell$. R and Q are points on AC and BC respectively, such that $\angle QPC = \angle RPC = x$.

- Find $\angle PCQ$ in terms of θ and hence find PQ in terms of ℓ , (b)
- Show that the area of $\Delta PQR = \frac{\ell^2 \sin \theta \cos \theta \sin 2x}{2 \sin (x + \theta) \cos (x \theta)}$, (c) and show that it can be expressed as $\frac{\ell^2 \sin 2\theta}{2} \left(1 - \frac{\sin 2\theta}{\sin 2x + \sin 2\theta} \right) \cdots (*)$
- If $\theta = \frac{\pi}{\varrho}$, find the possible range of values of x. (d) Hence use (*) to deduce the maximum area of ΔPQR and express it in terms of ℓ .
 - (ii) If $\theta = \frac{\pi}{12}$, what is the possible range of values of x?

Express the maximum area of ΔPQR in terms of ℓ .

19. A right circular cone of semi-vertical angle θ is circumscribed about a sphere of given radius a.

- Find the equations of the tangent and normal at (1, 1) to the curve $y = 4x^3 4x^2 + x$. 20. (a)
 - Find the coordinates of the point in which the tangent meets the curve again.
- A curve whose equation has the form $y = x^3 + ax + b$, where a, b are constants, passes through 21. the origin and the point (2, 6).
 - Find the coordinates of the points where the tangent is parallel to the x-axis. (a)
 - Find also the equations of the tangents at the point (2, 6) and at the points where the curve meets the x-axis.
- Prove that the equation of the tangent at the point 22. $P(4at^2, 8at^3)$ of the curve $av^2 = x^3$ is $v = 3tx - 4at^3$.
 - (b) The tangent meets the curve again at Q and the yaxis at R. Show that Q is the point $(at^2, -at^3)$ and that PQ = 3QR.

- A point P lies on the curve $y^2 = x^3$. The tangent at P meet the x-axis at L and the y-axis at M; the normal at P meets the x-axis at S and the y-axis at T.
 - Find the equations of the tangent and normal at P in terms of k, where k^3 is the ycoordinate of P, and
 - prove that $OL \cdot OS = TO \cdot OM$, where O is the origin.
- Find the equation of the tangent to the curve $3ay^2 = x^2(x+a)$ at the point (2a, 2a). 24. (a)
 - Find the coordinates of the point P at which this tangent meets the curve again, and (b)
 - prove that it is the normal to the curve at *P*.

- 1. (a) Let the depth of water be h cm.
 - Let the radius of surface of water be r cm.
 - Let the volume of water in the cone be $V \text{ cm}^3$.

Then
$$r = h \tan 30^\circ = \frac{h}{\sqrt{3}}$$

$$V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h = \frac{\pi}{9}h^3$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\pi}{3}h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$$

When
$$h = 6$$
, $\frac{dV}{dt} = 4$

$$4 = \frac{\pi}{3} (6)^2 \frac{\mathrm{d}h}{\mathrm{d}t}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{3\pi}$$

$$\therefore$$
 The water is rising at $\frac{1}{3\pi}$ cm/s.

(b) Let the wetted surface area be $S \text{ cm}^2$, the slant edge be L cm.

$$S = \pi r L, L = h \sec 30^\circ = \frac{2h}{\sqrt{3}}$$

$$S = \pi \left(\frac{h}{\sqrt{3}}\right) \cdot \frac{2h}{\sqrt{3}} = \frac{2\pi}{3}h^2$$

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{4\pi h}{3} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$$

When
$$h = 6$$
, $\frac{dh}{dt} = \frac{1}{3\pi}$

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{4\pi}{3} \times 6\pi \times \frac{1}{3\pi} = \frac{8}{3}$$

The wetted surface is increasing at
$$\frac{8}{3}$$
 cm²/s

- 2. Let the depth of water be h cm.
 - Let the volume of water in the cone be $V \text{ cm}^3$.

$$r = \frac{h}{2}$$

$$V = \frac{1}{3}\pi r^2 h = \frac{\pi}{3} \left(\frac{h}{2}\right)^2 h = \frac{\pi}{12} h^3$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\pi}{12} \left(3h^2\right) \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\pi h^2}{4} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$$

When
$$h = 3$$
, $\frac{dV}{dt} = -0.1$

$$-0.1 = \frac{\pi(3)^2}{4} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{4}{90\pi} = -\frac{2}{45\pi}$$

The depth of the water level is descending at a level of $\frac{2}{45\pi}$ cm/s when the depth of water in the funnel is 3 cm.

Fig. 1

Differentiation solution

- Created by Mr. Francis Hung
- 2. Let the depth of water be h m at time t minutes. The radius of surface of water is (a + h) m at that time. Let the volume of water be V m³

Let the volume of water be
$$V \text{ m}^3$$
.

$$V = \frac{\pi}{3} \left[(a+h)^3 - a^3 \right] = \frac{\pi}{3} \left(3a^2h + 3ah^2 + h^3 \right)$$

$$\frac{dV}{dt} = \frac{\pi}{3} \left(3a^2 + 6ah + 3h^2 \right) \frac{dh}{dt} = \pi (a^2 + 2ah + h^2) \frac{dh}{dt}$$

When
$$h = c$$
, $b = \pi(a^2 + 2ac + c^2) \frac{dh}{dt}$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{b}{\pi(a+c)^2}$$
 The rate at which the level of water is rising at $\frac{b}{\pi(a+c)^2}$ m/min.

4. Let the radius be r cm, the volume be V cm³ at time t seconds.

$$V = \frac{4\pi r^3}{3}$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$15 = 4\pi (10)^2 \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{3}{80\pi}$$

The radius increasing at a rate of $\frac{3}{80\pi}$ cm/s.

5. Let the radius be r cm, the surface area be S cm², the volume be V cm³ at time t seconds.

$$V = \frac{4\pi r^3}{3}$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$-2 = 4\pi(4)^2 \frac{\mathrm{d}r}{\mathrm{d}t}$$

$$\frac{\mathrm{d}r}{\mathrm{d}t} = -\frac{1}{32\pi}$$

$$S=4\pi r^2$$

$$\frac{\mathrm{d}S}{\mathrm{d}t} = 8\pi r \frac{\mathrm{d}r}{\mathrm{d}t} = 8\pi (4) \left(-\frac{1}{32\pi} \right) = -1$$

The surface area is diminishing at the rate of 1 cm²/s.

6. Let the ladder be AB.

Label the vertices A, B, P, O, Q, R, S, T as shown.

In order to pass through the corridor, the ladder has to be able to pass through the "narrowest" position ASB.

Let
$$AB = s = AS + SB$$

$$s = a \csc \theta + b \sec \theta$$

$$\frac{\mathrm{d}s}{\mathrm{d}\theta} = -a \csc \theta \cot \theta + b \sec \theta \tan \theta = 0$$

$$\frac{b\sin\theta}{\cos^2\theta} = \frac{a\cos\theta}{\sin^2\theta}$$

$$\tan^3 \theta = \frac{a}{b}$$

$$\tan \theta = \sqrt[3]{\frac{a}{b}}$$

$$\frac{d^2s}{d\theta^2} = a(\csc^3\theta + \csc\theta\cot^2\theta) + b(\sec^3\theta + \sec\theta\tan^2\theta)$$

$$\therefore 0 < \theta < \frac{\pi}{2}, \csc \theta > 0, \sec \theta > 0, \tan \theta > 0, \cot \theta > 0)$$

$$\therefore \frac{\mathrm{d}^2 s}{\mathrm{d}\theta^2}\bigg|_{\tan\theta - \sqrt[3]{\frac{a}{b}}} > 0$$

 \therefore When $\tan \theta = \sqrt[3]{\frac{a}{b}}$, s is a minimum.

Minimum
$$s = a \csc \theta + b \sec \theta = \frac{a\sqrt{a^{\frac{2}{3}} + b^{\frac{2}{3}}}}{a^{\frac{1}{3}}} + \frac{b\sqrt{a^{\frac{2}{3}} + b^{\frac{2}{3}}}}{b^{\frac{1}{3}}}$$

$$s = \left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}} \sqrt{a^{\frac{2}{3}} + b^{\frac{2}{3}}} = \left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$$

$$\therefore$$
 The length of the longest ladder is $\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.

Let the two numbers be x, 12 - x, and the sum be S. $S = x^3 + (12 - x)^2 = x^3 + x^2 - 24x + 144$ 7.

$$S = x^3 + (12 - x)^2 = x^3 + x^2 - 24x + 144$$

$$\frac{dS}{dx} = 3x^2 + 2x - 24 = 0 \Rightarrow x = \frac{-1 \pm \sqrt{73}}{3}$$

$$\frac{\mathrm{d}^2 S}{\mathrm{d}x^2} = 6x + 2$$

$$\frac{d^2S}{dx^2}\bigg|_{x=\frac{-1-\sqrt{73}}{2}} = 6 \times \left(\frac{-1-\sqrt{73}}{3}\right) + 2 < 0; \quad \frac{d^2S}{dx^2}\bigg|_{x=\frac{-1+\sqrt{73}}{2}} = 6 \times \left(\frac{-1+\sqrt{73}}{3}\right) + 2 > 0$$

When $x = \frac{-1 - \sqrt{73}}{2}$, S attains a relative maximum.

When $x = \frac{-1 + \sqrt{73}}{3}$, S attains a relative minimum.

$$\therefore$$
 The two numbers are $\frac{-1+\sqrt{73}}{3}$ and $12-\frac{-1+\sqrt{73}}{3}$; i.e. 2.5 and 9.5 corr. to 1 d.p.

The width of the base of the trapezium is (80 - 2x) cm. 8. The width of the upper base of the trapezium is $(80 - 2x + 2x \cos 60^{\circ}) \text{ cm} = (80 - x) \text{ cm}$ Let the area of the cross section be $S \text{ cm}^2$.

$$S = \frac{1}{2} (80 - 2x + 80 - x) \cdot x \sin 60^{\circ}$$

$$S = \frac{\sqrt{3}}{4} (160 - 3x) x = \frac{\sqrt{3}}{4} (160x - 3x^2)$$

$$\frac{dS}{dx} = \frac{\sqrt{3}}{4}(160 - 6x) = 0 \Rightarrow x = \frac{80}{3}$$

$$\frac{d^2S}{dx^2} = -\frac{3\sqrt{3}}{2} < 0$$

:. When
$$x = \frac{80}{3}$$
, S is a minimum

There is only one turning point:

 \therefore S attains the absolute maximum.

9. Suppose Car A passes a certain point O at time t = 0 sec.

After t sec, another Car B passes the point O. Car A has moved a distance $\left(3 + \frac{v}{3} + \frac{v^2}{300}\right)$ m.

$$t = \frac{\text{distance}}{\text{speed}} = \frac{\text{separation between A and B}}{\text{average speed}} = \frac{1}{v} \left(3 + \frac{v}{3} + \frac{v^2}{300} \right)$$

In one hour, suppose there are y cars passing O.

$$y = \frac{60 \times 60}{\frac{3}{v} + \frac{1}{3} + \frac{v}{300}} = \frac{1080000v}{900 + 100v + v^2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}v} = \frac{1080000 \left[v^2 + 100v + 900 - v(100 + 2v)\right]}{\left(v^2 + 100v + 900\right)^2} = \frac{1080000 \left(900 - v^2\right)}{\left(v^2 + 100v + 900\right)^2} = 0 \Rightarrow v = 30$$

v	30-	30	30 ⁺
$\frac{\mathrm{d}y}{\mathrm{d}v}$	+	0	_

 \therefore When v = 30, y is a relative maximum

The speed is 30 m/s.

10. Let the width of the box be x, length be 2x and height be h.

$$V = x(2x)h \Rightarrow h = \frac{V}{2x^2}$$

Let the total area be S.

$$S = 2xh + 2(2xh) + 2x^2 = 6xh + 2x^2$$

$$S = 6x \cdot \frac{V}{2x^2} + 2x^2 = \frac{3V}{x} + 2x^2$$

$$\frac{dS}{dx} = -\frac{3V}{x^2} + 4x = 0 \Rightarrow 4x^3 = 3V \Rightarrow x = \left(\frac{3V}{4}\right)^{1/3}$$

$$\frac{d^2S}{dx^2} = \frac{6V}{x^3} + 4 > 0$$
 for all $x > 0$

The other two sides are 2x, h.

$$2x = 2\left(\frac{3V}{4}\right)^{\frac{1}{2}} = 2^{\frac{1}{2}} (3V)^{\frac{1}{2}} = (6V)^{\frac{1}{2}},$$

$$h = \frac{V}{2x^2} = \frac{V}{2\left(\frac{3V}{4}\right)^{\frac{1}{3}}} = \left(\frac{2V}{9}\right)^{\frac{1}{3}}$$

$$11. \quad y = x - \frac{3\sin x}{2 + \cos x}$$

$$\frac{dy}{dx} = 1 - 3 \cdot \frac{(2 + \cos x)\cos x + \sin^2 x}{(2 + \cos x)^2} = 1 - 3 \cdot \frac{1 + 2\cos x}{(2 + \cos x)^2} = 1 - 3 \cdot \frac{4 + 2\cos x - 3}{(2 + \cos x)^2}$$

$$\frac{dy}{dx} = 1 - \frac{6}{2 + \cos x} + \frac{9}{(2 + \cos x)^2} = \left(1 - \frac{3}{2 + \cos x}\right)^2 \ge 0 \text{ for all } x$$

- \therefore y is an increasing function.
- \therefore As x increases from 0 to $\frac{\pi}{2}$, the function $x \frac{3\sin x}{2 + \cos x}$ continually increases.

12.
$$V = \pi r^2 h - \frac{4\pi r^3}{3}$$

$$h = \frac{V + \frac{4\pi r^3}{3}}{\pi r^2}$$

$$S = 2\pi rh + 4\pi r^2$$

$$S = 2\pi r \left(\frac{V + \frac{4}{3}\pi r^3}{\pi r^2} \right) + 4\pi r^2$$

$$S = \frac{2V}{r} + \frac{8\pi r^2}{3} + 4\pi r^2 = \frac{2V}{r} + \frac{20\pi r^2}{3}$$

$$\frac{\mathrm{d}S}{\mathrm{d}r} = \frac{40\pi r}{3} - \frac{2V}{r^2} = 0 \Rightarrow r^3 = \frac{3V}{20\pi}$$

$$\frac{d^2S}{dr^2} = \frac{40\pi}{3} + \frac{4V}{r^3} > 0 \text{ for all } r > 0$$

∴ S is a relative minimum when
$$r^3 = \frac{3V}{20\pi}$$

$$h = \frac{V + \frac{4\pi}{3} \left(\frac{3V}{20\pi}\right)}{\pi r^2}$$

$$\frac{h}{r} = \frac{V\left(1 + \frac{1}{5}\right)}{\pi r^3} = \frac{6V}{5} \div \frac{3V}{20} = 8$$

$$\therefore$$
 The ratio $\frac{r}{h} = \frac{1}{8}$

$$S = \frac{2V}{r} + \frac{20\pi r^2}{3} = \frac{2V}{\left(\frac{3V}{20\pi}\right)^{\frac{1}{3}}} + \frac{20\pi \left(\frac{3V}{20\pi}\right)^{\frac{2}{3}}}{3} = \frac{(20\pi)^{\frac{1}{3}}V^{\frac{2}{3}}(1+2)}{3^{\frac{1}{3}}} = (20\pi \times 3^2V^2)^{\frac{1}{3}} = (180\pi V^2)^{\frac{1}{3}}$$

Join BO, then $\angle OBP = \angle OBQ = \theta$ (tangent from ext. pt.)

$$\angle BPO = 90^{\circ} = \angle BQO \text{ (tangent } \perp \text{ radius)}$$

$$BP = r \cot \theta = PC \Rightarrow BC = 2r \cot \theta$$

In
$$\triangle ABP$$
, $AB = BP \sec 2\theta = r \cot \theta \sec 2\theta$

Let the area of the triangle ABC be S.

$$S = \frac{1}{2}BC \cdot AB\sin 2\theta$$

$$S = \frac{1}{2} 2r \cot \theta \cdot (r \cot \theta \sec 2\theta) \sin 2\theta$$

$$S = r^2 \cot^2 \theta \tan 2\theta$$

$$\frac{dS}{d\theta} = 2r^2 \cot \theta (-\csc^2 \theta \tan 2\theta + \cot \theta \sec^2 2\theta)$$

Let
$$\frac{dS}{d\theta} = 0 \Rightarrow \cot \theta = 0$$
 or $\tan 2\theta \csc^2 \theta = \cot \theta \sec^2 2\theta$

$$\theta = \frac{\pi}{2} \text{ or } \frac{\sin 2\theta}{\cos 2\theta} \cdot \frac{1}{\sin^2 \theta} = \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\cos^2 2\theta}$$

$$\theta = \frac{\pi}{2}$$
 or $\sin 2\theta \cos 2\theta = \sin \theta \cos \theta$

$$\theta = \frac{\pi}{2}$$
 or $2 \sin 2\theta \cos 2\theta = 2 \sin \theta \cos \theta$

$$\theta = \frac{\pi}{2}$$
 or $\sin 4\theta = \sin 2\theta$

$$\theta = \frac{\pi}{2}$$
, $4\theta = 2\theta$ or $4\theta = \pi - 2\theta$

$$\theta = \frac{\pi}{2}$$
 (rejected), $\theta = 0$ (rejected) or $\theta = \frac{\pi}{6}$

$$\frac{\mathrm{d}^2 S}{\mathrm{d}\theta^2} = 2r^2(\csc^4\theta \tan 2\theta - 4\csc^2\theta \cot\theta \sec^2 2\theta + 2\csc^2\theta \cot^2\theta \tan 2\theta + 4\cot^2\theta \sec^2 2\theta \tan 2\theta)$$

$$\frac{\mathrm{d}^{2}S}{\mathrm{d}\theta^{2}}\Big|_{\theta=\frac{\pi}{6}} = 2r^{2} \left[2^{4}\sqrt{3} - 4 \cdot 2^{2}\sqrt{3} \cdot 2^{2} + 2 \cdot 2^{2} \left(\sqrt{3}\right)^{2} \cdot \sqrt{3} + 4 \cdot \left(\sqrt{3}\right)^{2} \cdot 2^{2} \cdot \sqrt{3} \right] = 48\sqrt{3}r^{2} > 0$$

$$\therefore$$
 When $\theta = \frac{\pi}{6}$, S attains the minimum.

$$2\theta = \frac{\pi}{3}$$
, $\angle B = \angle C = \frac{\pi}{3}$: $\triangle ABC$ is equilateral.

14. Mark the points D and E as shown.

$$\angle ADB = \angle AEC = 90^{\circ}; DB = r, AD = H - h, DE = h$$

By similar triangles:
$$\frac{H}{R} = \frac{H - h}{r}$$

$$\frac{rH}{R} = H - h$$

$$h = H - \frac{rH}{R}$$

Volume of the cylinder $V = \pi r^2 h$

$$V = \pi r^2 \left(H - \frac{Hr}{R} \right)$$
, H and R are constants

$$V = \pi H \left(r^2 - \frac{r^3}{R} \right)$$

$$\frac{dV}{dr} = \pi H \left(2r - \frac{3r^2}{R} \right) = 0 \Rightarrow r = 0 \text{ (rejected) or } 2R = 3r; \text{ i.e. } r = \frac{2R}{3}$$

$$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = \pi H \left(2 - \frac{6r}{R} \right)$$

$$\left. \frac{\mathrm{d}^2 V}{\mathrm{d}r^2} \right|_{r = \frac{2R}{3}} = -2\pi H < 0$$

∴ When $r = \frac{2R}{3}$, the volume of the cylinder *V* is a maximum.

The maximum volume
$$V = \pi H \left[\left(\frac{2R}{3} \right)^2 - \frac{1}{R} \left(\frac{2R}{3} \right)^3 \right] = \frac{4\pi H R^2}{27}$$

Max.
$$V = \frac{4}{9} \left(\frac{\pi H R^2}{3} \right) = \frac{4}{9} \times \text{ volume of the cone.}$$

 \therefore The volume of the cylinder cannot exceed $\frac{4}{9}$ that of the cone.

15. (a)
$$N = 2CP + AP$$
$$= 2h \sec \theta + 50 - PB$$
$$= 2h \sec \theta + 50 - h \tan \theta$$

(b)
$$N = 50 + h(2 \sec \theta - \tan \theta)$$

$$\frac{dN}{d\theta} = h(2 \sec \theta \tan \theta - \sec^2 \theta) = 0$$

sec
$$\theta = 0$$
 (rejected) or 2 tan $\theta = \sec \theta$
2 sin $\theta = 1$
$$\theta = \frac{\pi}{6}$$

$$\frac{d^2N}{d\theta^2} = h(2 \sec \theta \tan^2 \theta + 2 \sec^3 \theta - 2 \sec^2 \theta \tan \theta)$$

$$\frac{d^{2}N}{d\theta^{2}}\bigg|_{\frac{\pi}{6}} = h\bigg(2 \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{3} + 2 \cdot \frac{8}{3\sqrt{3}} - 2 \cdot \frac{4}{3} \cdot \frac{1}{\sqrt{3}}\bigg) = \frac{4h}{\sqrt{3}} > 0$$

$$\therefore$$
 When $\theta = \frac{\pi}{6}$, N attains the minimum.

When
$$h = 50$$
, $\theta = \frac{\pi}{6}$, $N = 50 \left(1 + 2 \times \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right) = 50 \left(1 + \sqrt{3} \right)$

 \therefore The least transportation cost for 1 tonne of goods from C to A is \$50(1+ $\sqrt{3}$).

(c) (i) When
$$h > 50\sqrt{3}$$
, $\frac{50}{h} < \frac{1}{\sqrt{3}}$

$$\theta \le \angle ACB$$

$$\tan \theta < \tan \angle ACB = \frac{AB}{BC}$$

$$\tan \theta < \frac{50}{h} < \frac{1}{\sqrt{3}}$$

$$\tan \theta < \frac{1}{\sqrt{3}}$$

$$0 \le \theta < \frac{\pi}{6}$$

$$\frac{dN}{d\theta} = h(2 \sec \theta \tan \theta - \sec^2 \theta) = h \sec^2 \theta (2 \sin \theta - 1)$$

Clearly
$$\sec^2 \theta > 0$$
, $0 \le \sin \theta < \sin \frac{\pi}{6} = \frac{1}{2}$

$$\therefore 2 \sin \theta < 1 \Rightarrow 2 \sin \theta - 1 < 0$$

$$\therefore \frac{dN}{d\theta} < 0 \text{ for all possible values of } \theta.$$

(ii)
$$h = 200$$
, $\tan \angle ACB = \frac{50}{200} = \frac{1}{4}$

$$\Rightarrow 0 \le \theta \le \tan^{-1}\left(\frac{1}{4}\right)$$
From $(c)(i)$, $\frac{dN}{d\theta} < 0$

N is decreasing.

From the graph, when
$$\theta = \tan^{-1}\left(\frac{1}{4}\right)$$

The route should be taken as CA (directly) so that the transportation cost is the least.

16. $\therefore AD = \text{median}$

$$\therefore BD = CD \text{ and } AD \perp BC$$

Let *E* and *F* be the feet of perpendiculars from *P* onto *AC* and *AB* respectively, let AP = x, PD = h - x, $\angle BAD = \angle CAD = \theta$ By symmetry, $PE = PF = x \sin \theta$

Let $y = \text{product of distances} = PD \cdot PE \cdot PF$

$$y = (x \sin \theta)^2 (h - x)$$

 $y = \sin^2 \theta (hx^2 - x^3)$; h, θ are constants, x is a variable

$$\frac{dy}{dx} = \sin^2 \theta (2hx - 3x^2) = 0 \Rightarrow x = 0 \text{ (rejected) or } x = \frac{2h}{3}$$

$$\frac{d^2 y}{dx^2} = 2 \sin^2 \theta (h - 3x); \frac{d^2 y}{dx^2} \Big|_{x = \frac{2h}{3}} < 0$$

∴ When $x = \frac{2h}{3} \frac{2h}{3}$, y is a relative maximum.

So P divides AD in the ratio 2:1, in this case P is the centroid.

17.
$$y = x^3 - 3x^2 + 4x$$

$$\frac{dy}{dx} = 3x^2 - 6x + 4 = 3(x - 1)^2 + 1 > 0$$
 for all x.

 $\therefore y$ is strictly increasing for all x.

When
$$x > 0$$
, $x^3 - 3x^2 + 4x > 0^3 - 3 \times 0^2 + 4 \times 0 = 0$

 \therefore y is positive for all positive real values of x.

18. (a)
$$PA = PC \Rightarrow \angle PCA = \theta$$

$$\therefore \angle PRA = x + \theta \text{ (ext. } \angle \text{ of } \Delta)$$

In
$$\triangle PRA$$
, $\frac{PR}{\sin \theta} = \frac{\ell}{\sin (x+\theta)}$

$$\therefore PR = \frac{\ell \sin \theta}{\sin (x + \theta)}$$

(b)
$$PC = PB \Rightarrow \angle PCQ = \angle PBQ (= \phi)$$

$$2(\theta + \phi) = \pi \Rightarrow \phi = \frac{\pi}{2} - \theta \ (\angle \text{sum of } \Delta ABC)$$

$$\therefore \angle PCQ = \phi = \frac{\pi}{2} - \theta$$

$$\therefore \angle PQB = x + \phi \text{ (ext. } \angle \text{ of } \Delta)$$

In
$$\Delta PQB$$
, $\frac{PQ}{\sin\phi} = \frac{\ell}{\sin(x+\phi)}$

$$\therefore PQ = \frac{\ell \sin \phi}{\sin (x + \phi)} = \frac{\ell \sin \left(\frac{\pi}{2} - \theta\right)}{\sin \left(x + \frac{\pi}{2} - \theta\right)}$$

$$PQ = \frac{\ell \cos \theta}{\cos (\theta - x)} = \frac{\ell \cos \theta}{\cos (x - \theta)}$$

(c) Area of
$$\triangle PQR = \frac{1}{2}PQ \cdot PR \sin 2x$$

$$= \frac{\ell^2 \sin \theta \cos \theta \sin 2x}{2 \sin (x+\theta) \cos (x-\theta)} = \frac{\ell^2}{2} \cdot \frac{\sin 2\theta \sin 2x}{\sin 2x + \sin 2\theta}$$
$$= \frac{\ell^2 \sin 2\theta}{2} \cdot \left(\frac{\sin 2x + \sin 2\theta - \sin 2\theta}{\sin 2x + \sin 2\theta}\right)$$
$$= \frac{\ell^2 \sin 2\theta}{2} \cdot \left(1 - \frac{\sin 2\theta}{\sin 2x + \sin 2\theta}\right) \dots (*)$$

(d) (i) Let
$$\theta = \frac{\pi}{8}$$

$$\phi = \frac{\pi}{2} - \theta = \frac{3\pi}{8}$$

$$0 \le x \le \pi - 2\theta$$
 and $0 \le x \le \pi - 2\phi$

$$0 < x \le \frac{\pi}{4}$$

 $0 < \sin 2x \le 1$

The maximum area of ΔPQR is

$$\frac{\ell^2 \sin 2\theta}{2} \cdot \left(1 - \frac{\sin 2\theta}{1 + \sin 2\theta}\right) = \frac{\ell^2}{2(1 + \sqrt{2})} = \frac{\ell^2 (\sqrt{2} - 1)}{2} = 0.207 \ell^2$$

(ii) If
$$\theta = \frac{\pi}{12}$$
, then $\phi = \frac{5\pi}{12}$ and $0 < x \le \frac{\pi}{6}$

The maximum area of ΔPQR

$$= \frac{\ell^2 \sin \frac{\pi}{6}}{2} \cdot \left(1 - \frac{\sin \frac{\pi}{6}}{\sin \frac{\pi}{3} + \sin \frac{\pi}{6}}\right) = \frac{\ell^2}{4} \left(1 - \frac{1}{\sqrt{3} + 1}\right) = \frac{\ell^2 \sqrt{3}}{4(\sqrt{3} + 1)} = \frac{\ell^2 \sqrt{3}(\sqrt{3} - 1)}{8} = 0.158 \ell^2$$

19. (a) Height of the cone = $h = a + a \csc \theta$ Base radius of the cone = $h \tan \theta$ = $(a + a \csc \theta) \tan \theta$

$$\therefore V = \frac{1}{3}\pi \left[(a + a \csc \theta) \tan \theta \right]^2 (a + a \csc \theta)$$
$$= \frac{1}{3}\pi a^3 (1 + \csc \theta)^3 \tan^2 \theta$$

(b)
$$\frac{dV}{d\theta} = \frac{\pi a^3}{3} \left[3(1 + \csc\theta)^2 \left(-\csc\theta \cot\theta \right) \tan^2\theta + (1 + \csc\theta)^3 \left(2\tan\theta \sec^2\theta \right) \right]$$

$$= \frac{\pi a^3}{3} (1 + \csc\theta)^2 \tan\theta \left[-3\csc\theta + 2(1 + \csc\theta)\sec^2\theta \right]$$

$$= \frac{\pi a^3}{3} (1 + \csc\theta)^2 \cdot \frac{\sin\theta}{\cos\theta} \left[\frac{-3}{\sin\theta} + 2\left(1 + \frac{1}{\sin\theta} \right) \cdot \frac{1}{\cos^2\theta} \right]$$

$$= \frac{\pi a^3}{3} (1 + \csc\theta)^2 \left(\frac{-3\cos^2\theta + 2\sin\theta + 2}{\cos^3\theta} \right)$$

$$= \frac{\pi a^3}{3} (1 + \csc\theta)^2 \left(\frac{3\sin^2\theta + 2\sin\theta - 1}{\cos^3\theta} \right)$$

$$= \frac{\pi a^3}{3} (1 + \csc\theta)^2 \cdot \frac{(3\sin\theta - 1)(\sin\theta + 1)}{\cos^3\theta}$$

When
$$0 < \theta < \sin^{-1}\left(\frac{1}{3}\right)$$
, $\frac{dV}{d\theta} < 0$; when $\sin^{-1}\left(\frac{1}{3}\right) < \theta < \frac{\pi}{2}$, $\frac{dV}{d\theta} > 0$

When
$$\theta = \sin^{-1}\left(\frac{1}{3}\right)$$
, $\frac{dV}{d\theta} = 0$

∴ V attains the minimum when
$$\theta = \sin^{-1}\left(\frac{1}{3}\right) = 0.3398$$
.

20. (a)
$$y = 4x^3 - 4x^2 + x$$

When x = 1, y = 4 - 4 + 1 = 1; \therefore The point (1, 1) lies on the curve.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^2 - 8x + 1$$

$$\frac{dy}{dx}\Big|_{x=1} = 12 - 8 + 1 = 5$$

Equation of tangent is: $y - 1 = 5(x - 1) \Rightarrow 5x - y - 4 = 0$

Equation of normal: $y-1 = -\frac{1}{5}(x-1) \Rightarrow x + 5y - 6 = 0$

(b)
$$\begin{cases} y = 4x^3 - 4x^2 + x \\ y = 5x - 4 \end{cases}$$
$$4x^3 - 4x^2 + x = 5x - 4$$
$$4x^3 - 4x^2 - 4x + 4 = 0$$
$$x^2(x - 1) - (x - 1) = 0$$
$$(x^2 - 1)(x - 1) = 0 \Rightarrow (x - 1)^2 (x + 1) = 0$$
$$x = 1 \text{ (rejected) or } x = -1; y = 5(-1) - 4 = -9$$

 \therefore The coordinates of the point in which the tangent meets the curve again is (-1, -9).

21. (a) The curve
$$y = x^3 + ax + b$$
 passes through (0, 0) and (2, 6).

$$\therefore 0 = b \text{ and } 6 = 8 + 2a + b$$

$$\therefore a = -1 \text{ and } b = 0$$

$$y = x^3 - x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 1 = 0 \Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

When
$$x = \frac{1}{\sqrt{3}}$$
, $y = \left(\frac{1}{\sqrt{3}}\right)^3 - \frac{1}{\sqrt{3}} = -\frac{2}{3\sqrt{3}}$;

When
$$x = -\frac{1}{\sqrt{3}}$$
, $y = \left(-\frac{1}{\sqrt{3}}\right)^3 + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}}$.

Two points = $\left(\frac{1}{\sqrt{3}}, -\frac{2}{3\sqrt{3}}\right)$ and $\left(-\frac{1}{\sqrt{3}}, \frac{2}{3\sqrt{3}}\right)$ whose tangents are parallel to x-axis

(b)
$$\frac{dy}{dx}\Big|_{x=2} = 3 \times 2^2 - 1 = 11$$

Equation of tangent at (2, 6) is y - 6 = 11(x - 2)

$$11x - y - 16 = 0$$

$$Let y = x^3 - x = 0$$

$$x = 0$$
 or ± 1

$$\frac{dy}{dx}\Big|_{x=0} = -1; \quad \frac{dy}{dx}\Big|_{x=1} = 2; \quad \frac{dy}{dx}\Big|_{x=-1} = 2$$

Equation of tangent at x = 0 is $y = -x \Rightarrow x + y = 0$

Equation of tangent at x = 1 is $y = 2(x - 1) \Rightarrow 2x - y - 2 = 0$

Equation of tangent at x = -1 is $y = 2(x + 1) \Rightarrow 2x - y + 2 = 0$

22. (a) Differentiate
$$ay^2 = x^3$$
 with respect to x.

$$2ay\frac{dy}{dx} = 3x^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2ay}$$

$$\frac{dy}{dx}\Big|_{(4at^2,8at^3)} = \frac{3(4at^2)^2}{2a(8at^3)} = 3t$$

Equation of tangent at this point is: $y - 8at^3 = 3t(x - 4at^2) \Rightarrow y = 3tx - 4at^3$

Differentiation solution

(b)
$$\begin{cases} ay^2 = x^3 \\ y = 3tx - 4at^3 \end{cases}$$

$$a(3tx - 4at^3)^2 = x^3$$

$$9at^2x^2 - 24a^2t^4x + 16a^3t^6 = x^3$$

$$x^3 - 9at^2x^2 + 24a^2t^4x - 16a^3t^6 = 0$$
By division, $(x - 4at^2)(x^2 - 5at^2x + 4a^2t^4) = 0$

$$(x - 4at^2)^2(x - at^2) = 0$$

$$x = 4at^2 \text{ (rejected) or } x = at^2$$
When $x = at^2$, $y = 3t(at^2) - 4at^3 = -at^3$
The tangent meets the curve again at $Q(at^2, -at^3)$
Let $x = 0$ in the tangent $y = 3tx - 4at^3$

$$y = -4at^3$$

Let PQ : QR = r : 1The x-coordinate of $Q: at^2 = \frac{4at^2}{r+1} \Rightarrow r = 3$

$$\therefore PQ = 3QR$$

 $\Rightarrow R(0, -4at^3)$

23. (a) The y-coordinate of P be k^3 . Sub. into $y^2 = x^3 \Rightarrow (k^3)^2 = x^3$ $x = k^2 \Rightarrow P(k^2, k^3)$

Differentiate $y^2 = x^3$ with respect to x.

$$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2$$

$$\frac{dy}{dx} = \frac{3x^2}{2y} = \frac{3(k^2)^2}{2(k^3)} = \frac{3k}{2}$$

Equation of tangent: $y-k^3 = \frac{3k}{2}(x-k^2)$

Equation of normal: $y-k^3 = -\frac{2}{3k}(x-k^2)$

(b) To find L: $0 - k^3 = \frac{3k}{2}(x - k^2) \Rightarrow x = \frac{k^2}{3}$: $L = \left(\frac{k^2}{3}, 0\right)$

To find *M*: $y - k^3 = \frac{3k}{2} (0 - k^2)$

$$y = -\frac{k^3}{2} :: M = \left(0, -\frac{k^3}{2}\right)$$

To find S: $0-k^3 = -\frac{2}{3k}(x-k^2)$

$$x = k^2 + \frac{3k^4}{2}$$
 : $S = \left(k^2 + \frac{3k^4}{2}, 0\right)$

To find T: $y-k^3 = -\frac{2}{3k}(0-k^2)$

$$y = k^3 + \frac{2k}{3}$$
 :: $T = \left(0, k^3 + \frac{2k}{3}\right) \left(0, k^3 + \frac{2k}{3}\right)$

$$OL \cdot OS = \frac{k^2}{3} \cdot \left(k^2 + \frac{3k^4}{2}\right) = \frac{k^4}{6} \cdot (2 + 3k^2)$$

$$TO \cdot OM = \left(k^3 + \frac{2k}{3}\right) \cdot \frac{k^3}{2} = \frac{k^4}{6} \cdot (2 + 3k^2)$$

$$\therefore OL \cdot OS = TO \cdot OM$$

24. (a) Put
$$y = 2a$$
 into LHS = $3a(2a)^2 = 12a^3$
Put $x = 2a$ into RHS = $(2a)^2(2a + a) = 12a^3$

:.
$$(2a, 2a)$$
 lies on the curve $3ay^2 = x^2(x + a)$
 $3ay^2 = x^3 + ax^2 + ax^$

Differentiate with respect to *x*

$$6ay\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2ax$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 + 2ax}{6ay}$$

$$\frac{dy}{dx}\Big|_{(2a,2a)} = \frac{3(2a)^2 + 2a(2a)}{6a(2a)} = \frac{4}{3}$$

Equation of tangent: $y - 2a = \frac{4}{3}(x - 2a)$

$$3y - 6a = 4x - 8a$$

$$4x - 3y = 2a$$

(b)
$$y = \frac{1}{3}(4x - 2a)$$
 (2)

Sub. (2) into (1):
$$3a \left[\frac{1}{3} (4x - 2a) \right]^2 = x^3 + ax^2$$

$$16ax^2 - 16a^2x + 4a^3 = 3x^3 + 3ax^2$$

$$3x^3 - 13ax^2 + 16a^2x - 4a^3 = 0$$

By division,
$$(x - 2a)(3x^2 - 7ax + 2a^2) = 0$$

$$(x - 2a)^2(3x - a) = 0$$

$$x = 2a$$
 (rejected) or $x = \frac{a}{3}$, $y = -\frac{2a}{9}$

The coordinates of P at which this tangent meets the curve again is $\left(\frac{a}{3}, -\frac{2a}{9}\right)$.

(c)
$$\frac{dy}{dx}\Big|_{\left(\frac{a}{3}, -\frac{2a}{9}\right)} = \frac{3\left(\frac{a}{3}\right)^2 + 2a\left(\frac{a}{3}\right)}{6a\left(-\frac{2a}{9}\right)} = -\frac{3}{4}$$

$$\therefore$$
 Slope of normal at $\left(\frac{a}{3}, -\frac{2a}{9}\right)$ is $\frac{4}{3}$

Equation of normal at
$$\left(\frac{a}{3}, -\frac{2a}{9}\right)$$
 is: $y + \frac{2a}{9} = \frac{4}{3}\left(x - \frac{a}{3}\right)$

$$9y + 2a = 12x - 4a$$

$$4x - 3y = 2a$$

The equation of tangent at (2a, 2a) is the same as the normal to the curve at $\left(\frac{a}{3}, -\frac{2a}{9}\right)$.