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If ( )f dx x = F(x) + C, i.e. ( )d

d
F x

x
= f(x), then ( )f d
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x x = F(b) – F(a) 

and F(b) – F(a) is usually denoted by ( )[ ]b

axF  or ( )f d
b

a
x x 

  . 

Proof: In the figure, y = f(x) is a continuous curve in the interval [a, b] . 

 
Suppose t and t + ∆t are in [a, b] . 

Let A(t) = ( )f d
t

a
x x , i.e. the area bounded by y = f(x), x = a, x = t and the x-axis. 
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When ∆t → 0, the area of the rectangle PQNR approaches that of PQNM, i.e. ( )f d
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i.e. ( )d

d
A t

t
= f(t) 

Thus A(t) is a primitive function of f(t) and differs from F(t), another primitive function of f(t) 
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, by an arbitrary constant C . 

Hence A(t) = F(t) + C. 

∴ ( )f d
t

a
x x = F(t) + C ⋯⋯ (*) 

Putting t = a into (*), ( )f d
a

a
x x = F(a) + C 

0 = F(a) + C 

C = –F(a) 

Putting t = b into (*), we have ( )f d
b

a
x x = F(b) – F(a) 


