Last updated: 12 February 2022

Let $f:[a, b] \to \mathbb{R}$ be a continuous function. Suppose $a_1 \le b_1 \in (a, b)$ with $f(a_1) \times f(b_1) \le 0$,

then $\exists t \in (a, b)$ such that f(t) = 0.

Proof: WLOG assume $a_1 < b_1$ and $f(a_1) < 0$, $f(b_1) > 0$

Let
$$E = \{x \in [a_1, b_1]: f(x) \le 0\}$$

$$:: a_1 \in E \quad :: E \neq \emptyset$$

 $\forall x \in E, x \le b_1$: E is bounded above.

∴ sup E exists.

Let $t = \sup E$, the least upper bound of E.

claim 1 $t \neq b_1$

If $t = b_1$, then since $f(b_1) > 0$, $\exists \delta > 0$ such that $\forall x \in (b_1 - \delta, b_1] \Rightarrow f(x) > 0$

In particular, let
$$x = b_1 - \frac{\delta}{2} \in (b_1 - \delta, b_1]$$
, then $f(x) > 0$ and $x < t$

 $\therefore x$ is an upper bound for E, contradict that t is the least upper bound.

claim 2 $t \le b_1$

claim 2.1 If f(t) > 0, then we shall prove that there is a contradiction.

$$\exists \ \delta > 0 \text{ s.t. } \forall \ x \in (t - \delta, t + \delta) \subset (a_1, b_1) \Rightarrow f(x) > 0$$

In particular, let
$$x = t - \frac{\delta}{2} \in (t - \delta, t + \delta)$$
, then $f(x) > 0$ and $x < t$

 $\therefore x$ is an upper bound for E, contradict that t is the least upper bound.

claim 2.2 If f(t) < 0, then we shall prove that there is a contradiction.

claim 2.2.1 $t \neq a_1$

If
$$t = a_1, \exists \delta > 0$$
 s.t. $\forall x \in [a_1, a_1 + \delta) \Rightarrow f(x) < 0$

In particular, let
$$x = a_1 + \frac{\delta}{2}$$
, then $f(x) < 0$

but $t \le x$, : t is not an upper bound, contradiction.

case 2.2.2 $a_1 \le t$

$$\exists \ \delta > 0 \text{ s.t. } \forall \ x \in (t - \delta, t + \delta) \subset (a_1, b_1) \Rightarrow f(x) < 0$$

In particular, let
$$x = t + \frac{\delta}{2} \in (t - \delta, t + \delta)$$
, then $f(x) < 0$

but $t \le x$: same contradiction.

Therefore claim 2.2 is proved.

From claim 2.1 and claim 2.2, it is impossible to have f(t) > 0 or f(t) < 0; therefore, f(t) = 0, where $t = \sup E$, the least upper bound of E.