Fixed Point Theorem Example

Created by Mr. Francis Hung on 20111124.

Last updated: 12 February 2022

Supplementary Problem on Root Approximation

In this problem you may assumed that if $-1 \le M \le 1$, then $\lim_{n \to \infty} M^n = 0$.

- (a) If $a \le b$, let g(x) be a continuous differentiable function defined on [a, b]. Suppose y = g(x) satisfies the following 2 conditions:
 - (1) $a \le g(x) \le b$ for all $x: a \le x \le b$,
 - (2) $|g'(x)| \le M \le 1$ for all $x: a \le x \le b$.

If $x_{n+1} = g(x_n)$, prove that $\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_n$ and $a \le \lim_{n \to \infty} g(x_n) \le b$.

- (b) Let $g(x) = \frac{2}{x}$, $1 \le x \le 2$. Show that fixed-point method fails.
- (c) Let $g(x) = \frac{1}{x^2} \frac{10}{x}$, $3.1 \le x \le 3.2$. Show that fixed-point method also fails.
- (d) Given that a root of the equation $x + \ln x = 0$ is α . Show that $0.4 \le \alpha \le 0.8$. Here are three iterative formulae:
 - (i) $x_{r+1} = -\ln x_r$,
 - (ii) $x_{r+1} = e^{-x_r}$

(iii)
$$x_{r+1} = \frac{x_r + e^{-x_r}}{2}$$

- (α) Which of the formula can be used?
- (β) Which formula is better? Use it to find the root correct to 3 decimal places.

Solution

(a) Let h(x) = g(x) - x

then
$$h(a) = g(a) - a \ge 0$$

$$h(b) = g(b) - b \ge 0$$

 \therefore there is a root α : $a < \alpha < b$ such that $h(\alpha) = 0$

$$\Rightarrow$$
 g(α) = α

By mean value theorem, $g(x_n) - g(\alpha) = (x_n - \alpha)g'(c)$, $\alpha < c < x_n$

$$|x_{n+1} - \alpha| = |g(x_n) - g(\alpha)|$$
$$= |x_n - \alpha||g'(c)|$$

$$|x_{n+1} - \alpha| \le |x_n - \alpha| M$$

$$|x_n - \alpha| \le |x_{n-1} - \alpha|M$$

$$|x_{n-1} - \alpha| \le |x_{n-2} - \alpha|M$$

.....

$$\frac{|x_1 - \alpha| \le |x_0 - \alpha|M}{|x_n - \alpha| \le |x_0 - \alpha|M^n}$$

Take limit
$$n \to \infty$$

$$\lim_{n\to\infty} |x_n - \alpha| \le |x_0 - \alpha| \quad \lim_{n\to\infty} M^n$$

$$\left| \lim_{n \to \infty} (x_n - \alpha) \right| \le |x_0 - \alpha| \cdot 0 = 0$$

$$\Rightarrow \lim_{n\to\infty} x_n = \alpha = g(\alpha) = g(\lim_{n\to\infty} x_n)$$

$$\Rightarrow \lim_{n \to \infty} g(x_n) = \alpha \ (\because g \text{ is continuous.})$$

$$\Rightarrow \lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} x_n$$

$$\therefore a \le \alpha \le b$$

$$\therefore a \leq \lim_{n \to \infty} g(x_n) \leq b.$$

(b)
$$g(x) = \frac{2}{x} \quad 1 \le x \le 2$$

$$g'(x) = -\frac{2}{x^2} < 0 \Rightarrow g$$
 is strictly decreasing on [1, 2]

$$g(1) = 2$$
, $g(2) = 1$, $\therefore 1 \le g(x) \le 2$

∴ condition (1) is satisfied.

$$|g'(x)| = \frac{2}{x^2}$$

$$\frac{2}{4} \le \left| g'(x) \right| \le \frac{2}{1}$$

$$\Rightarrow \frac{1}{2} \le |g'(x)| \le 2$$
, In particular, $|g'(1.25)| = 1.28 > 1$

condition (2) fails.

(c)
$$g(x) = \frac{1}{x^2} - \frac{10}{x}$$
, $3.1 \le x \le 3.2$.

$$g(3.1) = -3.12 \notin [3.1, 3.2]$$

$$g(3.2) = -3.027 \notin [3.1, 3.2]$$

condition (1) fails

$$g'(x) = -\frac{2}{x^3} + \frac{10}{x^2}$$

$$g''(x) = \frac{6}{x^4} - \frac{20}{x^3}$$

Let
$$g''(x) = 0$$

$$\Rightarrow \frac{6}{x^4} - \frac{20}{x^3} = 0$$

$$\Rightarrow$$
 $6x^3 = 20x^4$

$$\Rightarrow$$
 6 = 20x

$$\Rightarrow x = 0.3$$

$$\therefore 3.1 \le x \le 3.2$$

∴g"
$$(x) \neq 0 \ \forall x \in [3.1, 3.2]$$

$$g''(3.1) = -0.61 < 0$$

 \therefore g'(x) is strictly decreasing

$$g'(3.2) \le g'(x) \le g'(3.1)$$

$$g'(3.1) = 0.97, g'(3.2) = 0.92$$

$$\therefore 0.92 < g(x) < 0.97$$

$$\Rightarrow$$
 |g'(x)| \le 0.98 \forall x \in [3.1, 3.2]

condition (2) is satisfied.

(d)
$$f(x) = x + \ln x$$

$$f(0.4) = -0.52 < 0$$

$$f(0.8) = 0.58 > 0$$

 \therefore there is a root α : $0.4 < \alpha < 0.8$ such that $f(\alpha) = 0$

$$f'(x) = 1 + \frac{1}{x}$$

$$\therefore$$
 f'(x) > 0 $\forall x \in [0.4, 0.8]$

 \therefore f(x) is strictly increasing and so that root α is unique.

(
$$\alpha$$
) (i) $x_{r+1} = -\ln x_r$
 $g(x) = -\ln x$
 $g'(x) = -\frac{1}{x}$
 $g'(0.4) = -2.5$; $g'(0.8) = -1.25$
 \therefore condition (2) fails

(ii)
$$x_{r+1} = e^{-x_r}$$

 $g(x) = e^{-x}$
 $g'(x) = -e^{-x} < 0 \Rightarrow g(x)$ is strictly decreasing $g'(0.4) = -0.67$
 $g'(0.8) = -0.45$
 $g'(0.8) < g'(x) < g'(0.4)$ for x : $0.4 < x < 0.8$
 $|g'(x)| \le 0.7 < 1$
condition (2) is satisfied.
 $g(0.4) = 0.67$, $g(0.8) = 0.45$
 $0.4 < g(x) < 0.8$ for all x : $0.4 < x < 0.8$
condition (1) is satisfied.
Fixed-point method can be applied.

(iii)
$$x_{r+1} = \frac{x_r + e^{-x_r}}{2}$$

 $g(x) = \frac{x + e^{-x}}{2}$
 $g(0.4) = 0.54$; $g(0.8) = 0.62$
 $g'(x) = \frac{1}{2}(1 - e^{-x}) > 0$ for all $x \in [0.4, 0.8]$.
 $g(x)$ is strictly increasing.
 $g(0.4) \le g(x) \le g(0.8)$
 $0.54 \le g(x) \le 0.62$
 $0.4 \le g(x) \le 0.8$
condition (1) is satisfied.
 $g'(0.4) = 0.16$; $g'(0.8) = 0.28$
 $g''(x) = \frac{1}{2}e^{-x} > 0$ for all x
 $g'(x)$ is strictly increasing on $[0.4, 0.8]$.
 $g'(0.4) \le g'(x) \le g'(0.8)$
 $0.16 \le g'(x) \le 0.28$
 $\therefore |g'(x)| \le 0.3 < 1$
condition (2) is satisfied
Fixed-point method can be applied.

For formula (ii), M = 0.7; for formula (iii), M = 0.3.

.: Formula (iii) is better.

Here is a comparison:

Let
$$x_0 = \frac{0.4 + 0.8}{2} = 0.6$$

Formula (ii)		Formula (iii)	
n	$x_{r+1} = e^{-x_r}$	n	$x_{r+1} = \frac{x_r + e^{-x_r}}{2}$
0	0.6	0	0.6
1	0.5488	1	0.5744
2	0.5776	2	0.5687
3	0.5612	3	0.5674
4	0.5705	4	0.5672
5	0.5652		
6	0.5682		
7	0.5665		
8	0.5675		
9	0.5669		
10	0.5673		
converges to 0.567 (3 d.p.) in 10 steps		converges to 0.567 (3 d.p.) in 4 steps	