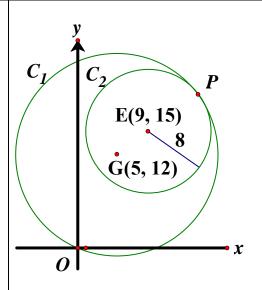

2 circles touch each, find the point of contact

Created by Mr. Francis Hung on 20220629. Last updated: 2022-06-30.



Distance between centres =
$$OG = \sqrt{(12-0)^2 + (5-0)^2} = 13$$

Sum of radii =
$$8 + 5 = 13 = OP + GP = OG$$

 \therefore O, P, G are collinear and OP: PG = 8:5

By section formula,
$$P = \left(\frac{5 \times 0 + 8 \times 12}{8 + 5}, \frac{5 \times 0 + 8 \times 5}{8 + 5}\right) = \left(\frac{96}{13}, \frac{40}{13}\right)$$
.

Given two circles C_1 , centre at origin G(5, 12), passing through the origin O and C_2 , centre at E(9, 15), radius 8. If C_1 and C_2 touch each other internally

Radius of
$$C_1 = \sqrt{(12-0)^2 + (5-0)^2} = 13$$

Distance between centres =
$$EG = \sqrt{(9-5)^2 + (15-12)^2} = 5$$

Difference of radii =
$$13 - 8 = 5 = GP - EP = GE$$

$$\therefore$$
 P, E, G are collinear and GE : EP = 5 : 8

Let the coordinates of P be (x, y).

By section formula,
$$\left(\frac{8 \times 5 + 5x}{8 + 5}, \frac{8 \times 12 + 5y}{8 + 5}\right) = E(9, 15)$$

$$5x + 40 = 9 \times 13, x = \frac{77}{5}; 5y + 96 = 15 \times 13, y = \frac{99}{5}. P = \left(\frac{77}{5}, \frac{99}{5}\right).$$