Equation of tangent of a circle at $P(x_0, y_0)$ on the circle.

Created by Mr. Francis Hung on 20220508. Last updated: 2022-05-08.

Given a circle with equation C: $x^2 + y^2 + Dx + Ey + F = 0$.

The cerntre is
$$G = \left(-\frac{D}{2}, -\frac{E}{2}\right)$$
, radius is $r = \sqrt{\left(\frac{D}{2}\right)^2 + \left(\frac{E}{2}\right)^2 - F}$ (assume that $D^2 + E^2 - 4F \ge 0$.)

Let $P(x_0, y_0)$ be any point on the circle. i.e. $x_0^2 + y_0^2 + Dx_0 + Ey_0 + F = 0$ (*)

Then the equation of tangent is: $x_0x + y_0y + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F = 0$.

Proof: Slope of
$$GP = \frac{y_0 - \left(-\frac{E}{2}\right)}{x_0 - \left(-\frac{D}{2}\right)} = \frac{y_0 + \frac{E}{2}}{x_0 + \frac{D}{2}}$$

Slope of tangent through
$$P = \frac{-1}{\text{slope of } GP} = -\frac{x_0 + \frac{D}{2}}{y_0 + \frac{E}{2}}$$

By point-slope form, the equation of tangent through *P* is $y - y_0 = -\frac{x_0 + \frac{D}{2}}{y_0 + \frac{E}{2}}(x - x_0)$.

$$\left(y_0 + \frac{E}{2}\right)(y - y_0) = -\left(x_0 + \frac{D}{2}\right)(x - x_0)$$

$$\left(x_0 + \frac{D}{2}\right)(x - x_0) + \left(y_0 + \frac{E}{2}\right)(y - y_0) = 0$$

$$\left(x_0 + \frac{D}{2}\right)x - x_0\left(x_0 + \frac{D}{2}\right) + \left(y_0 + \frac{E}{2}\right)y - \left(y_0 + \frac{E}{2}\right)y_0 = 0$$

$$x_0x + y_0y + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F - \left(x_0^2 + y_0^2 + Dx_0 + Ey_0 + F\right) = 0$$

$$x_0x + y_0y + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F = 0 \quad \text{(By (*))}$$

The proof is completed.

The chord of contact

If $P(x_0, y_0)$ lies ooutside the circle C, then the equation

$$x_0 x + y_0 y + \frac{D}{2} (x + x_0) + \frac{E}{2} (y + y_0) + F = 0$$

becomes the contact of contact.

Two external tangents can be drawn through the external point $P(x_0, y_0)$.

Suppose the coordinates of the points of contact are $A(x_1, y_1)$ and $B(x_2, y_2)$.

Then, by the above result, the equations of PA and PB are:

PA:
$$x_1 x + y_1 y + \frac{D}{2} (x + x_1) + \frac{E}{2} (y + y_1) + F = 0$$
 (1)

PB:
$$x_2x + y_2y + \frac{D}{2}(x + x_2) + \frac{E}{2}(y + y_2) + F = 0$$
 (2)

 \therefore PA and PB pass through P

$$\therefore x_1 x_0 + y_1 y_0 + \frac{D}{2} (x_0 + x_1) + \frac{E}{2} (y_0 + y_1) + F = 0 \quad \dots \quad (3)$$

$$x_2 x_0 + y_2 y_0 + \frac{D}{2} (x_0 + x_2) + \frac{E}{2} (y_0 + y_2) + F = 0$$
 (4)

Consider the equation:
$$x_0x + y_0y + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F = 0$$

Clearly it is a linear equation, so it is a straight line.

Put $x = x_1$, and $y = y_1$, it becomes equation (3). \therefore This straight line passes through (x_1, y_1) .

Put $x = x_2$, and $y = y_2$, it becomes equation (4). \therefore This straight line passes through (x_2, y_2) .

... The equation of the chord of contact is:
$$x_0x + y_0y + \frac{D}{2}(x + x_0) + \frac{E}{2}(y + y_0) + F = 0$$
.

Radical axis of two circles

Given the following two different circles:

$$C_1$$
: $x^2 + y^2 + D_1x + E_1y + F_1 = 0$

$$C_2$$
: $x^2 + y^2 + D_2x + E_2y + F_2 = 0$

Consider
$$C_1 - C_2$$
: $(D_1 - D_2)x + (E_1 - E_2)y + F_1 - F_2 = 0$.

The equation is linear in x and linear is y, so it is a straight line. This line is called L, the **radical axis**.

(1) The radical axis passes through a line which is perpendicular to the line joining the centres of C_1 and C_2 .

Proof: L:
$$(D_1 - D_2)x + (E_1 - E_2)y + F_1 - F_2 = 0$$

Centres $G_1\left(-\frac{D_1}{2}, -\frac{E_1}{2}\right)$, $G_2\left(-\frac{D_2}{2}, -\frac{E_2}{2}\right)$
Product of slopes $= -\frac{D_1 - D_2}{E_1 - E_2} \cdot \frac{-\frac{E_2}{2} + \frac{E_1}{2}}{-\frac{D_2}{2} + \frac{D_1}{2}}$
 $= -\frac{D_1 - D_2}{E_1 - E_2} \cdot \frac{E_1 - E_2}{D_1 - D_2} = -1$

:. They are perpendicular.

(2) If C_1 and C_2 intersect at $P(x_3,y_3)$ and $Q(x_4,y_4)$, then PQ is the radical axis.

$$x_{3}^{2} + y_{3}^{2} + D_{1}x_{3} + E_{1}y_{3} + F_{1} = 0 \quad \cdots \quad (5)$$

$$x_{4}^{2} + y_{4}^{2} + D_{1}x_{4} + E_{1}y_{4} + F_{1} = 0 \quad \cdots \quad (6)$$

$$x_{3}^{2} + y_{3}^{2} + D_{2}x_{3} + E_{2}y_{3} + F_{2} = 0 \quad \cdots \quad (7)$$

$$x_{4}^{2} + y_{4}^{2} + D_{2}x_{4} + E_{2}y_{4} + F_{2} = 0 \quad \cdots \quad (8)$$

$$(5) - (7): (D_{1} - D_{2})x_{3} + (E_{1} - E_{2})y_{3} + F_{1} - F_{2} = 0 \quad \cdots \quad (9)$$

$$(6) - (8): (D_{1} - D_{2})x_{4} + (E_{1} - E_{2})y_{4} + F_{1} - F_{2} = 0 \quad \cdots \quad (10)$$

By (9), the radical axis L passes through (x_3, y_3) .

By (10), the radical axis L passes through (x_4, y_4) .

The proof is completed.