$$C: x^2 + y^2 + Dx + Ey + F = 0$$

$$L: Ax + By + C = 0$$

$$H: C + kL: x^2 + y^2 + (D + kA)x + (E + kB)y + F + kC = 0$$

If C and L intersect, the centres of the family of circles H passes through the perpendicular bisector of C and L.

centre of
$$H = G_H = \left(-\frac{D + kA}{2}, -\frac{E + kB}{2}\right)$$

We shall find the locus of G_H by eliminating k.

Let
$$x = -\frac{D + kA}{2}$$
, $y = -\frac{E + kB}{2}$

$$-2x - D = kA; -2y - E = kB$$

$$-2x - D = kA; -2y - E = kB$$
$$-\frac{2x + D}{A} = -\frac{2y + E}{B}$$

$$2Bx - 2Ay + BD - AE = 0$$

This is the locus of centre of H, which is a straight line (let it be L_1)

slope of
$$L \times$$
 slope of $L_1 = -\frac{A}{B} \cdot \frac{B}{A} = -1$

$$\therefore L \perp L_1$$

Next, we shall show that the centre of C lies on L_1 .

Sub. the centre
$$\left(-\frac{D}{2}, -\frac{E}{2}\right)$$
 into L_1

LHS =
$$2B\left(-\frac{D}{2}\right) - 2A\left(-\frac{E}{2}\right) + BD - AE$$

$$=-BD+AE+BD-AE=0=RHS$$

 $\therefore L_1$ passes through the centre of C. (\perp from centre bisects chord)

So, L_1 is the perpendicular bisector of the intersection of C and L.

Note: If C and L does not intersect, the centre of H lie on a line L_1 which is perpendicular to L and passes through the centre of C.

If $R(x_0, y_0)$ is any point on L outside both circles C and H, then the length of tangent from R to C is the same as the length of tangent from R to H.

Suppose tangents RE touches C at E, RD touches H at D.

$$RE^{2} = x_{0}^{2} + y_{0}^{2} + Dx_{0} + Ey_{0} + F$$

$$RD^{2} = x_{0}^{2} + y_{0}^{2} + (D + kA)x_{0} + (E + kB)y_{0} + F + kC$$

$$= x_{0}^{2} + y_{0}^{2} + Dx_{0} + Ey_{0} + F + k(Ax_{0} + By_{0} + C)$$

$$= x_{0}^{2} + y_{0}^{2} + Dx_{0} + Ey_{0} + F + k(0), \therefore R(x_{0}, y_{0}) \text{ lies on } L$$

$$= RE^{2}$$

$$\therefore RD = RE$$

Note: The result is also true even if C and L does not intersect.

L is called the **radical axis** of C and H.

Given the following two different circles:

$$C_1$$
: $x^2 + y^2 + D_1x + E_1y + F_1 = 0$
 C_2 : $x^2 + y^2 + D_2x + E_2y + F_2 = 0$
 $mC_1 + nC_2$: $m(x^2 + y^2 + D_1x + E_1y + F_1) + n(x^2 + y^2 + D_2x + E_2y + F_2) = 0$
 $(m+n)x^2 + (m+n)y^2 + (mD_1 + nD_2)x + (mE_1 + nE_2)y + mF_1 + nF_2 = 0$ (*)
It represents a family of circles.

$$C_1 - C_2$$
: $(D_1 - D_2)x + (E_1 - E_2)y + F_1 - F_2 = 0$ is called the **radical axis**. (called it L)

(1) $mC_1 + nC_2$ is the same as $C_1 + kL$.

Proof: Divide (*) by
$$(m + n)$$

$$x^{2} + y^{2} + \frac{mD_{1} + nD_{2}}{m + n}x + \frac{mE_{1} + nE_{2}}{m + n}y + \frac{mF_{1} + nF_{2}}{m + n} = 0$$

$$x^{2} + y^{2} + \frac{mD_{1} + nD_{1} + n(D_{2} - D_{1})}{m + n}x + \frac{mE_{1} + nE_{1} + n(E_{2} - E_{1})}{m + n}y + \frac{mF_{1} + nF_{1} + n(F_{2} - F_{1})}{m + n} = 0$$

$$x^{2} + y^{2} + D_{1}x + E_{1}y + F_{1} + \frac{n(D_{2} - D_{1})}{m + n}x + \frac{n(E_{2} - E_{1})}{m + n}y + \frac{n(F_{2} - F_{1})}{m + n} = 0$$

$$x^{2} + y^{2} + D_{1}x + E_{1}y + F_{1} + \frac{n}{m + n}[(D_{1} - D_{2})x + (E_{1} - E_{2})y + F_{1} - F_{2}] = 0$$

which is the form $C_1 + kL$, where $k = \frac{n}{m+n}$.

(2) The radical axis passes through a line which is perpendicular to the line joining the centres of C_1 and C_2 .

Proof: L:
$$(D_1 - D_2)x + (E_1 - E_2)y + F_1 - F_2 = 0$$

Centres $G_1\left(-\frac{D_1}{2}, -\frac{E_1}{2}\right)$, $G_2\left(-\frac{D_2}{2}, -\frac{E_2}{2}\right)$
Product of slopes $= -\frac{D_1 - D_2}{E_1 - E_2} \cdot \frac{-\frac{E_2}{2} + \frac{E_1}{2}}{-\frac{D_2}{2} + \frac{D_1}{2}}$
 $= -\frac{D_1 - D_2}{E_1 - E_2} \cdot \frac{E_1 - E_2}{D_1 - D_2} = -1$

∴ They are perpendicular.

- (3) If C_1 and C_2 intersect at P, Q, then PQ is the radical axis.
- (4) $C_1 + kL$ and C_1 have the same radical axis.

Given the following two different circles:

$$C_1$$
: $x^2 + y^2 + D_1x + E_1y + F_1 = 0$

$$C_2$$
: $x^2 + y^2 + D_2x + E_2y + F_2 = 0$

Suppose C_1 and C_2 intersect at P and Q.

Find the **acute** angle between the tangents of the circles.

Suppose the centres of C_1 and C_2 are G_1 and G_2 respectively.

Suppose the radii of C_1 and C_2 are r_1 and r_2 respectively.

Suppose the distance between the centres G_1 and G_2 is d.

Let L_1 be the tangent at P to the circle C_1 , let L_2 be the tangent at P to the circle C_2 .

Let θ be the angle between L_1 and L_2 .

 $G_1P \perp L_1$, $G_2P \perp L_2$ (tangent \perp radius)

Consider the sum of angles at P: $\theta + 90^{\circ} + 90^{\circ} + \angle G_1PG_2 = 360^{\circ}$ (\angle s at a point)

$$\theta = 180^{\circ} - \angle G_1 P G_2$$

By cosine formula on $\Delta G_1 P G_2$

$$\cos \angle G_1 P G_2 = \frac{r_1^2 + r_2^2 - d^2}{2r_1 r_2}$$

$$\cos \angle G_1 P G_2 = \frac{r_1^2 + r_2^2 - d^2}{2r_1 r_2}$$

$$\cos \theta = -\cos \angle G_1 P G_2 = \frac{d^2 - (r_1^2 + r_2^2)}{2r_1 r_2}$$

Note that θ may be acute or obtuse depend on $\cos \theta > 0$ or $\cos \theta < 0$.

Orthogonal circles

Two circles are orthogonal if the angle between them is 90° In this case, $r_1^2 + r_2^2 = G_1G_2^2$.

Exercise

Show that the circles

$$C_1$$
: $x^2 + y^2 - 6x = 0$

$$C_2$$
: $x^2 + y^2 - 8y = 0$

are orthogonal.