Inclination of a Straight Line

Created by Mr. Francis Hung on 20091202

Last updated: February 27, 2023

Given a straight line L. If the line is parallel to x-axis, then the inclination of a straight line is 0° .

If the line L is not parallel to x-axis, then L will intersect x-axis at a point P. The angle at which the line L makes with positive x-axis, measured in anti-clockwise direction, is the **inclination** of the straight line L.

If the inclination of the straight line *L* is θ , then $0^{\circ} \le \theta < 180^{\circ}$.

The following figures show different cases:

Slope of a Straight Line

If the inclination of a straight line is θ and $\theta \neq 90^{\circ}$, then the slope of the straight line is defined as: $m = \tan \theta$.

If the inclination of a straight line is 90°, then the slope of the straight line is undefined.

In particular, $\theta = 0^{\circ}$, $m = \tan 0^{\circ} = 0$. i.e. the slope of a line parallel to x-axis is 0.

 $\theta = 63.4^{\circ}$, $m = \tan 63.4^{\circ} = 2$. i.e. a line starting from lower left hand to upper right hand has a **positive** slope.

 $\theta = 135^{\circ}$, $m = \tan 135^{\circ} = -1$. i.e. a line starting from upper left hand to lower right hand has a **negative** slope.

Given that a line passes through two points $A(x_1, y_1)$, $B(x_2, y_2)$ and let the inclination of AB be θ . If $\theta \neq 90^{\circ}$, then $x_1 \neq x_2$. Let C be (x_2, y_1) . Join AC, BC. Then $\angle ACB = 90^{\circ}$.

If
$$\theta < 90^{\circ}$$
, then $\tan \theta = \frac{BC}{AC} = \frac{y_2 - y_1}{x_2 - x_1}$.

If
$$\theta > 90^{\circ}$$
, then $\tan(180^{\circ} - \theta) = \frac{BC}{AC} = \frac{y_2 - y_1}{x_1 - x_2}$.

$$-\tan \theta = -\frac{y_2 - y_1}{x_2 - x_1}$$

$$\tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

In both cases,
$$m = \tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

Example 1 Find the slope and the inclination of the line passes through A(3, -2), B(-1, 1).

$$m = \tan \theta = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-2)}{-1 - 3} = -\frac{3}{4}$$

$$\theta = 143.1^{\circ}$$

Example 2 Given A(3, -2), B(-1, 1), C(4, 2). Find $\angle ACB$.

$$m_{AC} = \tan \alpha = \frac{2 - (-2)}{4 - 3} = 4, \ \alpha = 75.96^{\circ}$$

$$m_{BC} = \tan \beta = \frac{2-1}{4-(-1)} = \frac{1}{5}, \beta = 11.31^{\circ}$$

$$\angle ACB = \alpha - \beta = 75.96^{\circ} - 11.31^{\circ} = 64.65^{\circ} \text{ (ext. } \angle \text{ of } \Delta)$$

Parallel Lines

Two lines L_1 and L_2 are parallel if their inclinations are equal. That is to say, if the inclination of L_1 is α and the inclination of L_2 is β , then L_1 // L_2 if and only if $\alpha = \beta$.

Suppose $\alpha \neq 90^{\circ}$, $\beta \neq 90^{\circ}$, then $L_1 // L_2$ if and only if $m_{L1} = m_{L2}$.

$$L_1 // L_2 \Leftrightarrow \alpha = \beta \Leftrightarrow \tan \alpha = \tan \beta \Leftrightarrow m_{L1} = m_{L2}$$

Example 3 Given A(-4, -2), B(b, b - 2), C(3, 4). If A, B and C lie on the same straight line, find b.

$$AB // AC \Rightarrow m_{AB} = m_{AC}$$

$$\Rightarrow \frac{b - 2 - (-2)}{b - (-4)} = \frac{4 - (-2)}{3 - (-4)}$$

$$\Rightarrow \frac{b}{b + 4} = \frac{6}{7}$$

$$7b = 6b + 24$$

$$b = 24$$

Example 4 Given A(-5,6), B(-2,4), C(x, y) and D(-3,3). If ABCD forms a parallelogram, find x and y.

$$AB // CD \Rightarrow \frac{y-3}{x+3} = \frac{4-6}{-2+5} \Rightarrow \frac{y-3}{x+3} = -\frac{2}{3} \Rightarrow 3y-9 = -2x-6 \Rightarrow 2x+3y-3 = 0 \quad \dots (1)$$

$$AD // BC \Rightarrow \frac{y-4}{x+2} = \frac{3-6}{-3+5} \Rightarrow \frac{y-4}{x+2} = -\frac{3}{2} \Rightarrow 2y-8 = -3x-6 \Rightarrow 3x+2y-2 = 0 \cdots (2)$$

$$3 \times (1) - 2 \times (2)$$
: $5y - 5 = 0 \Rightarrow y = 1$

$$3\times(2) - 2\times(1)$$
: $5x = 0 \Rightarrow x = 0$

Perpendicular Lines

Suppose the inclination of a line L_1 is α and the inclination of another line L_2 is β . The two lines are perpendicular if and only if $|\beta - \alpha| = 90^{\circ}$.

If $\alpha \neq 0^{\circ}$ and $\beta \neq 0^{\circ}$, then $L_1 \perp L_2$ if and only if $m_{L1} \cdot m_{L2} = -1$

Proof: Method 1

Draw a line $AD \perp BC$.

Let
$$\angle ABD = \theta$$

then
$$\angle BDA = 90^{\circ} (::AD \perp BC)$$

$$\angle BAD = 180^{\circ} - \theta - 90^{\circ} \ (\angle \text{ sum of } \Delta)$$

$$= 90^{\circ} - \theta$$

$$\angle CAD = \angle BAC - \angle BAD$$

$$= 90^{\circ} - (90^{\circ} - \theta) \ (\because L_1 \perp L_2)$$

$$= \theta$$

$$\therefore \angle ABD = \angle CAD = \theta$$

$$\angle ADB = \angle ADC = 90^{\circ}$$
 (by construction)

 $\therefore \Delta ABD \sim \Delta CAD$ (equiangular)

$$\frac{CD}{AD} = \frac{AD}{BD}$$
 (corr. sides, $\sim \Delta s$)

$$\frac{AD \times AD}{BD \times CD} = 1 \cdot \dots \cdot (1)$$

Conversely, if $m_1 \times m_2 = -1$,

$$\frac{y_A - 0}{x_A - x_B} \cdot \frac{0 - y_A}{x_C - x_A} = -1$$

$$\frac{AD}{BD} \cdot \frac{-AD}{CD} = -1$$

$$\frac{AD \times AD}{BD \times CD} = 1$$

$$\frac{CD}{AD} = \frac{AD}{BD}$$

$$\angle ADB = \angle ADC = 90^{\circ}$$
 (by construction)

Let the coordinates of $A(x_A, y_A)$, $B(x_B, 0)$,

$$C(x_C, 0), D(x_D, 0)$$

$$m_{1} \times m_{2}$$

$$= \frac{y_{A} - 0}{x_{A} - x_{B}} \cdot \frac{0 - y_{A}}{x_{C} - x_{A}}$$

$$= \frac{AD}{BD} \cdot \frac{-AD}{CD}$$

$$= -\frac{AD}{BD} \cdot \frac{AD}{CD}$$

$$= -1$$

$$\therefore m_{1} \times m_{2} = -1$$

$$\triangle ABD \sim \triangle CAD$$
 (ratio of 2 sides, included \angle)
 $\angle ABD = \angle CAD$ (corr. $\angle s$, $\cong \Delta s$)
 $\angle ABD + \angle BAD + 90^{\circ} = 180^{\circ}$ (\angle sum of Δ)
 $\angle CAD + \angle BAD = 90^{\circ}$
 $\angle BAC = 90^{\circ}$

 $\therefore L_1 \perp L_2$.

Method 2

Without loss of generality, assume $\beta > \alpha$.

As shown in the diagram, $\beta = 90^{\circ} + \alpha$ (ext. \angle of Δ)

$$\tan\beta = \tan(90^\circ + \alpha)$$

$$\tan\beta = -\frac{1}{\tan\alpha}$$

 $\tan \alpha \tan \beta = -1$

$$m_1 m_2 = -1$$

It can be easily proved that the converse is also true.

Example 5 Given A(2, 3), B(5, 2) and C(4, y)

(b) Show that
$$\triangle ABC$$
 is isosceles.

(a)
$$m_{AB} \times m_{BC} = -1$$

$$\frac{3-2}{2-5} \cdot \frac{y-2}{4-5} = -1$$

$$\frac{1}{-3} \cdot \frac{y-2}{-1} = -1$$

$$y - 2 = -3$$

$$y = -1$$

(b)
$$AB = \sqrt{(2-5)^2 + (3-2)^2} = \sqrt{10}$$

$$BC = \sqrt{(5-4)^2 + (2-1)^2} = \sqrt{10}$$

$$AB = BC$$

 $\therefore \Delta ABC$ is isosceles.

Example 6 Given A(3,0), B(0,4). If ABCD form a square, find C.

There are two possible cases.

Case 1 C, D lies on the upper right hand corner. Case 2 C, D lies on the lower left hand corner.

Method 1 Let C = (x, y)

$$AB = \sqrt{(3-0)^2 + (0-4)^2} = 5 = BC = \sqrt{(x-0)^2 + (y-4)^2} \Rightarrow x^2 + (y-4)^2 = 25 \dots (1)$$

$$AB \perp BC \Rightarrow m_{AB} \cdot m_{BC} = -1$$

$$\frac{0-4}{3-0} \cdot \frac{y-4}{x-0} = -1 \Rightarrow 4y - 16 = 3x \Rightarrow x = \frac{4y-16}{3} \quad \dots (2)$$

Sub. (2) into (1):
$$\left(\frac{4y-16}{3}\right)^2 + (y-4)^2 = 25$$

$$16y^2 - 128y + 256 + 9(y^2 - 8y + 16) = 225$$

$$25y^2 - 200y + 175 = 0$$

$$25(y-1)(y-7)=0$$

$$y = 1 \text{ or } y = 7 \Rightarrow x = -4 \text{ or } x = 4 \Rightarrow C = (-4, 1) \text{ or } (4, 7)$$

Method 2

Suppose C lies on the upper right hand corner.

Let
$$C = (x, y)$$
. $x > 0, y > 0$.

Let
$$E = (0, y)$$
, let $\angle OBA = \theta$

$$\angle ABC = 90^{\circ}$$
 (property of a square)

$$\angle CBE = 180^{\circ} - 90^{\circ} - \theta$$
 (adj. \angle s on st. line)
= $90^{\circ} - \theta$

$$\angle BCE = 90^{\circ} - (90^{\circ} - \theta) = \theta \ (\angle s \text{ sum of } \Delta)$$

$$AB = BC$$
 (property of a square)

$$\therefore \Delta AOB \cong \Delta BOC (ASA)$$

$$BE = y - 4 = OA = 3$$
 (corr. sides $\cong \Delta s$)

$$y = 7$$

$$CE = x = OB = 4$$
 (corr. sides $\cong \Delta s$)

$$\therefore C = (4, 7)$$

When C lies on the lower left hand corner, the work is similar.

Example 7 Given A(3,0), C(0,4). If ABCD form a square, find B.

Method 1 Let B = (x, y)

$$AB \perp BC \Rightarrow m_{AB} \cdot m_{BC} = -1$$

$$\frac{y-0}{x-3} \cdot \frac{y-4}{x-0} = -1 \Rightarrow y^2 - 4y = -x^2 + 3x$$

$$x^2 + y^2 - 3x - 4y = 0$$
(1)

$$AB = BC \Rightarrow \sqrt{(x-3)^2 + y^2} = \sqrt{x^2 + (y-4)^2}$$

$$x^2 - 6x + 9 + y^2 = x^2 + y^2 - 8y + 16$$

$$6x - 8y + 7 = 0$$

$$y = \frac{6x+7}{8} \quad \dots (2)$$

Sub. (2) into (1)

$$x^{2} + \left(\frac{6x+7}{8}\right)^{2} - 3x - 4\left(\frac{6x+7}{8}\right) = 0$$

$$64x^2 + (36x^2 + 84x + 49) - 192x - (192x + 224) = 0$$

$$100x^2 - 300x - 175 = 0$$

$$4x^2 - 12x - 7 = 0$$

$$(2x+1)(2x-7)=0$$

$$x = -\frac{1}{2}$$
 or $\frac{7}{2}$

$$y = \frac{1}{2}$$
 or $\frac{7}{2}$

$$B(-\frac{1}{2}, \frac{1}{2}) \text{ or } (\frac{7}{2}, \frac{7}{2})$$

Method 2 Suppose *B* lies on the upper right hand corner.

$$M = \text{mid point of } AC = (1.5, 2)$$

Let
$$Q = (0, 2), P = (1.5, v)$$

Then
$$\angle CQM = \angle BPM = 90^{\circ}$$
 (by construction)

CM = BM (diagonal of a square)

$$\angle CMO = 90^{\circ} - \angle CMP = \angle BMC - \angle CMP = \angle BMP$$

$$\Delta CQM \cong \Delta BPM (AAS)$$

$$BP = x - 1.5 = CQ = 4 - 2 = 2$$
 (corr. sides $\cong \Delta s$)

$$x = 3.5$$

$$PM = y - 2 = QM = 1.5$$
 (corr. sides $\cong \Delta s$)

$$v = 3.5 \Rightarrow B = (3.5, 3.5)$$

The case where *B* lies on the lower left hand corner is similar.

Exercise 1 Given A(0, 0), B, C(8, 6) and D form a rhombus with each side = 13. Find B and D.

Angle between two straight Lines

Given two non-parallel straight lines L_1 and L_2 . Suppose they intersect at a point P. Let α and β be the inclinations of L_1 and L_2 respectively. Let their respective slopes be m_1 and m_2 . Four angles are formed at P. If they are perpendicular, then the angle between L_1 and L_2 is 90°. Otherwise, the angle between the two lines ids defined as the acute angle, θ , between them.

Without loss of generality, assume $\beta > \alpha$, then $\theta = \beta - \alpha$ (ext. \angle of Δ)

$$\tan \theta = \tan(\beta - \alpha)$$

$$\tan \theta = \frac{\tan \beta - \tan \alpha}{1 + \tan \alpha \tan \beta}$$

$$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

If we don't know whether α or β is bigger, then $\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$.

Example 8 Given O(0, 0), A(1, 1), C(1, 3). B is a point on OC such that OA = AB.

Find the slope of AB.

slope of OA = 1, slope of OC =slope of OB = 3

Let
$$\angle AOB = \theta = \angle ABO$$
 (base \angle s, isos. \triangle)

$$\tan\theta = \left| \frac{3-1}{1+3} \right| = \frac{1}{2}$$

Let the slope of AB be m

$$\frac{1}{2} = \left| \frac{m-3}{1+3m} \right|$$

$$1 + 3m = 2(m-3)$$
 or $1 + 3m = 2(3-m)$

$$\Rightarrow m = -7 \text{ or } 1 \text{ (rejected)}$$

$$\therefore m = -7$$

